CLAHE算法学习

本文介绍了CLAHE(对比度有限的自适应直方图均衡化)算法,探讨了直方图均衡化的基本原理和效果,指出其存在的问题,如过度增强对比度导致的噪点和细节丢失。接着详细解释了CLAHE如何通过限制对比度和使用双线性插值解决这些问题。最后,展示了OpenCV中实现CLAHE的方法,通过实例代码和对比效果,证明CLAHE在保持局部对比度和避免细节丢失方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.前言

图像识别工程开发中需要增强图像对比度,便于后续处理,接触到了CLAHE(Contrast Limited Adaptive Histogram Equalization),记录一下其中的学习过程。

1.直方图均衡

1.1灰度直方图

灰度图中像素值的分布为0-255,以灰度值为横坐标,纵坐标为该灰度值对应的像素点数目/比例,则得到了灰度图像的直方图,体现的是图像中灰度的整体分布情况。

OpenCV中提供了相应的计算函数calcHist(),可以得到相应分布范围的像素点数;将其绘制出来观察,更为直观。下图为某输入图像和其灰度直方图分布。

一般性规律:对于灰度图像,以个人观察意愿将其分为前景和背景区域,前景是我们所感兴趣的区域,背景则反之。若前景和背景的灰度差异大,则易于人们观察,否则不易观察。一般来说若图像的灰度直方图集中在某个区域,其整体对比度较差,不易于我们区分前景和背景;反之若灰度直方图分布较为均匀,则整体对比度较好,易于我们区分前景和背景。

1.2直方图均衡化(Histogram Equalization, HE)

1)效果

直方图均衡化就是一种使图像的灰度直方图分布更佳均匀的变换方法。OpenCV

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mega_Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值