自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(150)
  • 资源 (11)
  • 收藏
  • 关注

原创 C++学习1-vector学习

C++ vector基础用法

2023-01-03 16:14:13 244 1

原创 Linux Ubuntu 永久修改分辨率到1920x1080(多次尝试有效)

添加 /etc/X11/xorg.conf 文件,将此模式保存为默认分辨率。$ sudo vim /etc/X11/xorg.conf(如果没有安装vim,可以使用“sudo gedit /etc/X11/xorg.conf”)粘贴以下内容:Section "Monitor"Identifier "Configured Monitor"Modeline "1920x1080_60.00" 173.00 1920 2048 2248 2576 1080 1083 1088 1120 -

2022-04-13 10:40:56 4028 2

原创 Linux QT GUI 界面程序打包 linuxdeployqt

说明:1.主要依赖linuxdeployqt打包工具2.打包Linux上的QT界面软件,使其不依赖QT开发环境linuxdeployqt安装过程:不能下载官方编译好的.appimage文件,会报告gblic的问题下载官方源码修改main.cpp,屏蔽掉版本判断部分,否则还会报gblic的问题可能会报Git错误,不是GIT仓库,找不到commit ID等,解决办法---屏蔽掉其cmakelist中的GIT相关部分,或直接git https://github.com/probonopd

2022-04-13 10:27:30 1159

原创 批量下载百度搜索图片+labelimg制作自己的数据集+转换至Yolo-v5训练数据集

由于课题需要,需要自己制作数据集进行训练,目前是自己制作的第二个数据集,发现有某些细节已经忘记,记录备忘,同时为后来者提供借鉴。文章以car-tank数据集做为例子介绍整体流程:1.准备数据:从各种途径获取原始数据,博主的car-tank原始数据是在网上搜索然后批量保存的2.标注数据:使用labelimg标注软件标注数据,最终得到images、label文件3.分配数据转换格式:label标注的标签文件为xml文件,需要划分数据集,并转换到txt格式4.修改yolo-v5代码...

2021-11-29 20:19:33 9066 1

原创 Matlab 双目相机标定 opencv应用

只记录坑点注意点:1.双目数据获得原始数据获得----其实是一张图片,从中间一分为二,分别为左右相机画面cap = cv2.VideoCapture(1)cap.set(3,1280)cap.set(4,480)while True: ret1, frame = cap.read() # ret2, frame2 = camera2.read() # if not ret1 or not ret2: if ret1 != True: b

2021-11-11 15:26:43 3952 1

原创 奥比中光Astra s Pro深度相机(RGBD)+Ubuntu显示深度图像+jeston Xavier NX平台

近日课题需要某鱼低价淘到atsra深度相机一个,型号都有点搞不清,因为奥比中光的型号排序太差劲了,有Astra,Astra s,Astra p,Astra pro,Astra pro s m 等,乱的很,而且官网还找不到部分型号属于哪个类型,故在windows上调试极其费劲,浪费一上午也没调出来,最后灵光乍现根据各部分资料拼凑,在jeston NX的Ubuntu 平台上调试成功,写博客记录下坑点。奥比官网参考资料:https://orbbec3d.com/develop/https:/...

2021-11-02 20:42:07 8140 8

原创 阿里云服务器-修改为Ubuntu16.04浏览器远程访问图形界面

经师弟推荐通过某种途径白嫖得阿里云的低配服务器,1M,2GB, 40G的,因为不是互联网科班出身,第一次使用服务器记录下配置过程,还是有些坑值得参考的。还是老套路,先介绍基本流程1.以某种渠道获得一个阿里云服务器,知道公网IP2.更换系统镜像为Ubuntu16.04(18.04不知道为啥出不来图形界面)3.安装图形化界面4.配置管理员登录5.重启1.省略,自行获取2.(1)停止服务器(2)点击更换操作系统操作十分简单,不做详述,务必注意选择1...

2021-11-01 21:26:57 659

原创 YOLOV3个人理解总结

DBL:代码中的Darknetconv2d_BN_Leaky,是yolo_v3的基本组件。就是卷积+BN+Leaky relu。resn:n代表数字,有res1,res2, … ,res8等等,表示这个res_block里含有多少个res_unit。concat:张量拼接。将darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。上述参考原文链接:https://blog.csdn.n...

2021-10-21 16:29:03 1762

原创 YOLOV2个人理解总结

YOLOv2框架图+YOLOv2改进之处1、Batch NormalizationBN(Batch Normalization)层简单讲就是对网络的每一层的输入都做了归一化,这样网络就不需要每层都去学数据的分布,收敛会快点。原来的YOLO算法(采用的是GoogleNet网络提取特征)是没有BN层的,因此在YOLOv2中作者为每个卷积层都添加了BN层。另外由于BN可以规范模型,所以本文加入BN后就把dropout去掉了。实验证明添加了BN层可以提高2%的mAP。...

2021-10-21 10:50:16 435

原创 YOLOV1个人理解总结

YOLO是著名的端到端目标检测框架,最大的特点是检测快,亲自试验YOLOv3-v5,v5在jeston Xavier NX上可以达到15FPS左右,检测精度也相当可观,可以达到实时检测,网络的输入是整个图片,输出则是对49个grid cell的预测。YOLOV1的框架图输入输入就是原始图像,唯一的要求是缩放到448×448的大小。主要是因为YOLO的网络中,卷积层最后接了两个全连接层,全连接层是要求固定大小的向量作为输入,所以倒推回去也就要求原始图像...

2021-10-20 20:22:18 434

原创 Jeston xavier nx 安装pytorch,torchvision

上篇博客两天了浏览量还是0~不过仍然要写一下记录下自己为jeston NX配置环境的历程。首先放出别的参考博客链接:NVIDIA JETSON XAVIER NX (三)安装Pytorch和torchvision_小可同学呀的博客-CSDN博客NVIDIA Jetson Xavier NX安装pytorch - 哔哩哔哩(亲测成功)NVIDIA Jetson NX 安装Miniconda以及Pytorch1.7_d597797974的博客-CSDN博客NVIDIA Jetson NX配置

2021-10-12 15:42:40 1325 8

原创 jeston Xavier NX 安装opencv,pycharm运行

一、默认 OpenCV 卸载为什么要卸载默认的 OpenCV ?输入命令sudo jtop按数字6查看INFO页面,可以看到* OpenCV: 4.1.2 compiled CUDA: NO所以默认的 OpenCV 版本是不带 CUDA 加速的,无法充分利用 NX 的 GPU 性能卸载默认的 OpenCV 方法sudo apt purge libopencv*sudo apt autoremovesudo apt update二、编译安装 OpenCV安

2021-10-11 08:56:13 1015 2

原创 Backbone-各种基础网络总结

各种基础网络结构总结,各种各样的基础网络眼花缭乱,不知道该用哪个,都有什么特性,借此文总结记录。最常用:VGGNet,ResNetVGGNet:VGG是2014年提出来的,一共有6个版本,最常用的是VGG16和VGG19,。VGG是许多目标检测框架的特征提取网络,如fasterrcnn,SSD(在其基础上做了修改)。个人总结,VGG网络排列工整,从前到后顺序执行,非常好理解,但是其参数量太大,且参数多数集中在后面的全连接层,SSD修改的就是这一部分。...

2021-09-24 09:47:03 585

原创 SSD目标检测流程深入理解

前言:SSD是经典的一阶目标检测网络框架,特点是速度快,网络简洁。主要思想:(1)数据增强,包括光学变换和几何变换(2)网络骨架,SSD在VGG基础上延伸了4个卷积模块(生成不同尺度的特征图)(3)PriorBox与多层特征图:在不同尺度设置预选框,分别检测不同大小物体(4)正、 负样本的选取与损失计算:按比例选取正负样本流程图:以下两个版本更好理解一、数据增强数据增强流程如上图所示,通过光学变换和几何变换进行数据增强,分别...

2021-09-19 01:36:55 2481 1

原创 Faster-rcnn目标检测流程深入理解

笔者言:学习目标检测框架过程中记录自己的理解过程,个人认为理论知识足够完备前不急动手,单纯学习理论又过于无聊,写博客复述自己的理解是个不错的选择,当做笔记。背景:发源于RCNN、fast-rcnn,最大创新点,提出RPN网络和Anchor机制(锚框机制),物体检测分两步实现,第一步找到前景物体,给出先验框;第二步对先验框内物体分类并修正目标位置。主要环节:(1)特征提取网络:一般选用VGG16或Resnet(2)RPN模块:区域生成模块,用于生成默认2...

2021-09-18 10:41:03 2219

原创 5.树莓派程序自启动、Python脚本自启动(rc.local不自启动原因)

曾在树莓派4B有桌面和无桌面(启动lxterminal不启动桌面)的情况下研究过程序的自启动,但随着在树莓派zero上的开发,发现无桌面的启动有更好的方式,也就是修改rc.local文件,但是启动Python脚本有几点需要注意的地方,否则会跳坑1.修改rc.local文件sudo nano /etc/rc.local在exit0前添加要执行的语句如添加 ulimit –n 65535作用为设置最大链接数,否则运行时间长报too many files然后启动Python脚本pytestal

2021-06-30 22:16:25 2731

原创 机器学习各经典算法最最最简单通俗理解-knn、决策树、朴素贝叶斯

机器学习各经典算法简单通俗理解knn计算测试数据与训练数据之间的欧式距离y,其中x为各项特征值,最终计算出测试样本与所有训练数据之间的欧氏距离,在其中选出最小的k个(k为正整数),认为测试数据的类别与这k个的类别相同。举例:使用knn对手写字体进行分类测试数据 01……9很多数据,每个数字可多张所有数据都为32x32维度,处理成一行1024列的数据进行运算,计算这1024个特征值构成的数据的欧氏距离,在其中选取k个最小的值的数据的类别作为分类结果。决策树搭建树形结构的决策模型,根据.

2021-06-14 19:07:09 749 3

原创 OV7670摄像头 驱动时序理解

关于ov7670的摄像头等其他摄像头的说明可能有很多,记录下自己的理解,便于下次快速上手近期由于需要本来需要32CB系列接收ov7670数据再iic发出去(ov7670无)

2021-06-13 00:26:49 1910

原创 STM32开发 cube创建工程全过程、手动移植注意事项

STM32 cubemx是一个极其好用的代码初始化工具,记录下使用它创建工程的过程及移植其代码注意事项。

2021-06-12 23:39:38 868

原创 STM32 IIC通信-硬件从机 cube-HAL库

搞过很长时间的stm32 了,但是一直没有深入的研究底层,iic方面之前多是作为主机 ,而且多是使用io口模拟的,由于工作需要学习了下iic硬件从机的使用,使用cube

2021-06-12 22:57:56 6925 2

原创 pytorch12-基于VGG19搭建FCN-8s语义分割网络(VOC2012数据集)

import copyimport timeimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom PIL import Imageimport torchfrom torchsummary import summaryfrom torch import nnimport torch.nn.functional as Fimport torch.utils.data as Dataimport .

2021-06-06 16:37:07 1000

原创 pytorch11-调用训练好的fcn_resnet101进行语义分割

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport PILimport torchfrom torchvision import transformsimport torchvisionmodel = torchvision.models.segmentation.fcn_resnet101(pretrained=True)model.eval()image = PIL.Image.ope.

2021-06-06 16:32:20 1431

原创 pytorch10-基于自编码网络的数据重构和网络编码特征可视化

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport hiddenlayer as hlfrom sklearn.manifold import TSNEfrom sklearn.svm import SVCfrom sklearn.decomposition import PCAfrom sklearn.metric.

2021-06-01 22:22:15 341 2

原创 pytorch9-微调VGG16网络(基于kaggle数据集识别10种猴)

import hiddenlayer as hlimport torchimport torch.nn as nnfrom torch.optim import SGD, Adamimport torch.utils.data as Datafrom torchvision import modelsfrom torchvision import transformsfrom torchvision.datasets import ImageFolder# 导入预训练好的vgg16网络.

2021-05-30 20:53:28 637

原创 pytorch8-基于FashionMNIST搭建卷积神经网络进行识别

import torchimport torch.nn as nnimport torch.utils.data as Dataimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.metrics import accuracy_score, confusion_matrix, classification_reportimport torchimport seaborn as snsimport copyimpor.

2021-05-30 20:45:02 343

原创 pytorch7-可视化训练过程(过程中显示)

import torchimport torch.nn as nnimport torchvisionimport torchvision.utils as vutilsfrom torch.optim import SGDimport torch.utils.data as Datafrom sklearn.metrics import accuracy_scoreimport matplotlib.pyplot as pltimport hiddenlayer as hlfrom t.

2021-05-30 20:42:36 507

原创 pytorch6-可视化训练过程(结束后保存图片及记录)

import torchimport torch.nn as nnimport torchvisionimport torchvision.utils as vutilsfrom torch.optim import SGDimport torch.utils.data as Datafrom sklearn.metrics import accuracy_scoreimport matplotlib.pyplot as pltimport hiddenlayer as hlfrom t.

2021-05-30 20:41:10 1249

原创 pytorch5-各种常用激活函数

import matplotlib.pyplot as pltimport torchfrom torch import nnx = torch.linspace(-6, 6, 10)sigmoid = nn.Sigmoid() # sigmoid激活函数ysigmoid = sigmoid(x)tanh = nn.Tanh() # tanh激活函数ytanh = tanh(x)relu = nn.ReLU() # Relu激活函数yrelu = relu(x)softplu.

2021-05-30 20:33:05 159

原创 pytorch4-全卷积神经网络

import torchimport torch.nn as nnfrom torch.optim import SGDimport torch.utils.data as Datafrom sklearn.datasets import load_bostonfrom sklearn.preprocessing import StandardScalerimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt.

2021-05-30 20:30:56 396

原创 pytorch3-基于mnist数据集的简单卷积网络

import torchimport torchvisionfrom torch.utils.data import DataLoaderimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimimport matplotlib.pyplot as pltn_epochs = 3batch_size_train = 64batch_size_test = 1000learnin.

2021-05-30 20:26:06 270

原创 pytorch2-基于minst数据集的简单全连接网络

# coding = utf-8import numpy as npimport torchfrom torchvision import transforms_task = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( [0.5], [0.5] )])from torchvision.datasets import MNIST# 数据集加载mnist = M.

2021-05-30 20:23:31 143

原创 pytorch1-基于Pytorch的CIFAR-10图片分类

# coding = utf-8# 基于Pytorch的CIFAR-10图片分类import torchimport torch.nnimport numpy as npfrom torchvision.datasets import CIFAR10from torchvision import transformsfrom torch.utils.data import DataLoaderfrom torch.utils.data.sampler import SubsetRandom.

2021-05-30 20:19:08 220

原创 机器学习实战-knn-文本数据,手写字符识别

机器学习实战-knn-文本数据,手写字符识别'''Created on Sep 16, 2010kNN: k Nearest NeighborsInput: inX: vector to compare to existing dataset (1xN) dataSet: size m data set of known vectors (NxM) labels: data set labels (1xM vector)

2021-02-17 18:27:17 213

原创 机器学习实战-knn-基本原理

knn基本原理学习理解from numpy import *import operatorfrom os import listdir# knn分类函数def classify0(inX, dataSet, labels, k): # inX-输入向量 # dataset-训练数据 # labels-标签向量 # k-表示选择最近邻居的数目 dataSetSize = dataSet.shape[0] # 看有多少个数据 print("d

2021-02-17 11:01:21 236

原创 机器学习、深度学习、神经网络、目标检测、卷积神经网络等相关名词解释、理解和含义

几大名词范围:机器学习:

2021-02-07 23:41:39 1954 1

原创 Python opencv学习-23 基于opencv的YOLOv3的视频流测试

基于opencv的yolov3视频流测试# This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html# Usage example: python3 object_det

2021-02-07 11:34:12 452

原创 Python opencv学习-22 基于opencv的YOLOv3的图片测试

Python opencv yolov3从OpenCV 3.4.2开始,我们可以很容易的在OpenCV应用中使用YOLOv3模型(即OpemCV-3.4.2开始支持YOLOv3这网络框架)。下面为笔者整理的基于opencv的yolov3测试,针对的是测试图片import numpy as npimport cv2 as cvimport osimport timeyolo_dir = "C:\\Users\\MLW\Desktop\\test-detect1-29\\yolov3"

2021-02-07 11:30:07 314

原创 Python opencv学习-21 光流法

光流法# 光流法,标记视频中物体的移动import numpy as npimport cv2cap = cv2.VideoCapture(0)# ShiTomasi 角点检测参数feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)# luc

2021-02-06 16:03:58 930

原创 Python opencv学习-20 Meanshift 和 Camshift (目标追踪)

测试说明:对颜色比较敏感,相同颜色的目标会错认import cv2import numpy as np# 设置初始化的窗口位置初始窗口位置和大小r, h, c, w = 150, 100, 300, 100 # 设置追踪区域参数track_window = (c, r, w, h)cap = cv2.VideoCapture(0)ret, frame = cap.read()print(frame.shape)# 设置追踪的区域roi = frame[r:r + h, c

2021-02-06 13:02:50 340

转载 Python opencv学习-19 背景减除算法

文章转载自https://blog.csdn.net/tengfei461807914/article/details/81588808目标:这一节要了解背景减除算法在opencv中的应用。基础:背景减除算法是很多以机器视觉为基础的应用中,非常重要的预处理算法。例如,使用固定的摄像头来统计一个房间的进出人数或者交通摄像头提取关于交通工具的信息等等。在所有这些例子当中,你首先要做的就是把人和交通工具单独提取出来。从技术上来讲,你需要把移动的前景从静止的背景当中提取出来。如果你要一张单独的背

2021-02-05 23:18:54 2383

摄像头软件工程所需文件.zip

疫情期间家里没网,故只传必需文件,可以自己配置环境 https://blog.csdn.net/qq_36071362/article/details/104189839 这篇博客配套资料

2020-02-05

python-人脸识别素材+识别器.zip

python-人脸识别素材+识别器原文是对黄家驹和黄家强识别,不同之处本文换为万茜和江疏影,自行脑补为啥选她们吧。。。另外添上识别器在链接里一块下载

2020-01-16

基于arduino的循线小车.zip

使用arduino作为主控的循线小车,nano版本,编程极其简单,使用的是五个传感器,两个在侧面检测停车线的,循线是3个

2019-05-28

基于Arduino的灯带控制程序.zip

使用Arduibo控制的灯带程序,每个灯相当于一个像素点,可以控制显示任何颜色

2019-05-28

32遥控小车+福斯i6+mpu6050+12864LCD+遥控+四驱.zip

基于stm32c8t6的遥控小车,使用的是福斯i6遥控器,pwm输入捕获,12864LCD显示

2019-05-27

51单片机9600波特率蓝牙遥控器.zip

使用51单片机制作而成的蓝牙遥控器,可以代替手机当遥控器控制其他东西

2019-05-27

51单片机手机蓝牙遥控小车.zip

基于51单片机的蓝牙遥控车,自行下载手机软件,可以改上自己的代码

2019-05-27

STM32F103C8T6接收福斯i6遥控器信号12864屏幕显示(输入捕获)

基于stm32f103c8t6的福斯i6遥控器接收程序,可用于读取mpu6050,可使用12864显示屏显示

2019-01-25

基于STM32C8T6的mpu6050,遥控器程序

基于STM32C8T6的,mpu6050六轴传感器,福斯i6六通道遥控器,32的TIM时钟进行PWM输入捕获,基本功能已经实现,发上来供网友参考

2018-02-25

基于STM32CBT6的RTC时钟,SPI的12864OLED,cube,hal库

前言:楼主是非计算机专业的软件小白,从大一下学期(2年前)开始入门单片机,大部分时间一直从事飞卡智能车制作和应付机械方面的考试,研究过四旋翼无人机,智能车近期寒假有时间移植了下STM32的12864程序,借助CUBE和HAL库,新手可以很快的开发STM32,但个人感觉代码初始化软件是种开发软件,处于学习阶段的小白不适合使用,建议学习过基本的寄存器时钟中断配置后再入cube的坑

2018-02-25

基于VC6.0的MFC串口助手

前言:本人是非计算机专业的软件小白,从大一下学期(2年前)开始入门单片机,大部分时间一直从事飞卡智能车制作和应付机械方面的考试, 近期由于个人爱好和需求开始入门电脑端的上位机,借寒假一点时间写了个初代的串口助手,基本通讯功能已经实现,发上来供同仁参考

2018-02-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除