python pandas中series与dataframe数据类型属性及操作基础

本文介绍了Python Pandas库中Series和DataFrame的数据类型属性及操作基础。内容包括Series的创建,它包含一组数据和自定义或自动生成的索引;DataFrame是表格型数据结构,拥有行和列索引,允许不同列包含不同类型的值。通过实例展示了如何创建Series和DataFrame,以及使用字典和数组构建DataFrame的方法。注意,当构建DataFrame时,传入的索引和列名必须为列表,并确保所有序列长度相同。
摘要由CSDN通过智能技术生成

一)属性

series    :.index,.values, .name,.index.name
dataframe :.columns, .index,.values

二)创建方法
series:
一组数组(列表或元组),series除了一组数据外还包括一组索引(即只有行索引),索引可自行定义也可利用Series(),自动生成索引;
dataframe:
是表格型数据,既有行索引又有列索引,每列数据可以为不同类型数据(数值、字符串、布尔型值),可利用DataFrame(其他数据,dataframe属性)指定dataframe的属性创建dataframe。

三)实例
3.1 创建series及其属性展示实例

代码

#创建series
import pandas as pd
obj_list=[1,2,3,4]
obj_tuple=(4,5,6,7)
obj_dict={
  'a':[1,2],'b':[2,3],'c':[3,4],'d':[4,5]}
obj_series_list=pd.Series(obj_list)#通过列表创建series
obj_series_tuple=pd.Series(obj_tuple,index=list('abcd'))#通过元组创建series
obj_series_dict=pd.Series(obj_dict)#通过字典创建series
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨岚❤️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值