scikit-learn:0.1. 数据集格式和预测器

本文详细介绍了使用scikit-learn处理数据集、构建预测模型的过程,包括数据集的加载与预处理,以及如何使用预测器进行训练与预测。通过实例演示了如何将非二维数据转换为适合scikit-learn使用的格式,并展示了模型训练及预测的基本步骤。

http://scikit-learn.org/stable/tutorial/statistical_inference/settings.html


1、数据集:

数据集都是2维的,第一维度是“样本维”,第二维度是“特征维”。

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data
>>> data.shape
(150, 4)
说明有150个样本,每个样本由4个特征描述。


如果原始数据不是 (m_samples, n_features)的形状,在使用scekit-learn之前需要预处理成2维的,常见的是图片数据处理:

>>> digits = datasets.load_digits()
>>> digits.images.shape
(1797, 8, 8)
将每个8*8维的图像转换为feature长度为64的数据:

>>> data = digits.images.reshape((digits.images.shape[0], -1))

2、预测器:

预测器从数据集中学习,构建预测模型。

所有预测器使用fit方法从2维数据集中学习,构建模型:

>>> estimator.fit(trainData)
预测器构建好预测模型后,通过predict方法对未知数据集进行预测(分类、回归、聚类等等):

>>> estimator.predict(textData)

当然,也可以查看预测器构建的预测模型的一些参数:

>>> estimator.estimated_param_ 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值