http://scikit-learn.org/stable/tutorial/statistical_inference/settings.html
1、数据集:
数据集都是2维的,第一维度是“样本维”,第二维度是“特征维”。
说明有150个样本,每个样本由4个特征描述。
如果原始数据不是 (m_samples, n_features)的形状,在使用scekit-learn之前需要预处理成2维的,常见的是图片数据处理:
将每个8*8维的图像转换为feature长度为64的数据:
2、预测器:
预测器从数据集中学习,构建预测模型。
所有预测器使用fit方法从2维数据集中学习,构建模型:
预测器构建好预测模型后,通过predict方法对未知数据集进行预测(分类、回归、聚类等等):
当然,也可以查看预测器构建的预测模型的一些参数:

本文详细介绍了使用scikit-learn处理数据集、构建预测模型的过程,包括数据集的加载与预处理,以及如何使用预测器进行训练与预测。通过实例演示了如何将非二维数据转换为适合scikit-learn使用的格式,并展示了模型训练及预测的基本步骤。
304

被折叠的 条评论
为什么被折叠?



