参考:http://scikit-learn.org/stable/modules/unsupervised_reduction.html
对于高维features,常常需要在supervised之前unsupervised dimensionality reduction。
下面三节的翻译会在之后附上。
4.4.1. PCA: principal component analysis
decomposition.PCA looks for a combination of features that capture well the variance of the original features. See Decomposing signals in components (matrix factorization problems). 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/46867597。
4.4.2. Random projections
The module: random_projection provides several toolsfor data reduction by random projections. See the relevant section of the documentation: Random Projection. 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47067003。
4.4.3. Feature agglomeration(特征集聚)
cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave similarly.
Feature scaling
Note that if features have very different scaling or statistical properties, cluster.FeatureAgglomeration may not be able to capture the links between related features. Using a preprocessing.StandardScaler can be useful in these settings.
Pipelining:The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining estimators.

本文探讨了在高维数据预处理阶段,如何使用PCA、随机投影和特征集聚等方法进行维度减少,以简化数据结构并提高后续模型训练效率。重点介绍了PCA原理及其在人脸识别领域的应用实例,随机投影在数据嵌入中的作用,以及特征集聚如何通过层次聚类合并相似特征。
6589

被折叠的 条评论
为什么被折叠?



