# 题目重述
给定一个无向加权图 $ G = (V, E) $,每条边 $ e \in E $ 具有成本 $ c(e) \geq 0 $ 和附加属性 $ a(e) $(如延迟、带宽等)。目标是求一棵生成树 $ T $,使得:
- 总成本 $ \sum_{e \in T} c(e) $ 最小;
- 对于若干指定的关键路径 $ P_1, P_2, \dots, P_k $(路径为顶点序列),其上所有边的属性 $ a(e) $ 之和不超过给定阈值 $ A_i $,即:
$$
\sum_{e \in P_i} a(e) \leq A_i, \quad \forall i = 1,\dots,k
$$
完成以下任务:
1. 构建该约束最小生成树问题(CMSTP)的优化模型
2. 判断是否为 NP-hard;若是,设计近似算法并分析其近似比
3. 实现一种合适的近似或启发式算法(可写伪代码)
4. 讨论扩展至多目标优化或多商品流问题的可能性
---
# 详解
## 1)优化模型构建
我们形式化地定义 **带路径约束的最小生成树问题(CMSTP)** 如下:
### 输入:
- 无向图 $ G = (V, E) $
- 成本函数:$ c: E \to \mathbb{R}^+ $
- 属性函数:$ a: E \to \mathbb{R}^+ $
- 关键路径集合:$ \mathcal{P} = \{P_1, P_2, \dots, P_k\} $,其中每个 $ P_i $ 是从 $ s_i $ 到 $ t_i $ 的路径(不一定简单)
- 延迟上限:$ A_i > 0 $,对应路径 $ P_i $
> 注:这里的“关键路径”指在最终生成树中必须存在的路径(即连接特定端点),但更合理的解释是:**若某对节点间存在通信需求,则它们在生成树中的唯一路径必须满足总延迟 ≤ $ A_i $**。
因此,我们将约束重新理解为:
> 在生成树 $ T $ 中,对于每一对 $ (s_i, t_i) $,其唯一路径 $ \text{path}_T(s_i, t_i) $ 满足:
$$
\sum_{e \in \text{path}_T(s_i,t_i)} a(e) \leq A_i
$$
### 决策变量:
引入二元变量:
$$
x_e =
\begin{cases}
1, & \text{边 } e \text{ 被选入生成树} \\
0, & \text{否则}
\end{cases}
$$
令 $ \mathcal{T} $ 表示所有生成树的集合。
### 整数线性规划(ILP)模型:
$$
\min \sum_{e \in E} c(e) x_e
$$
$$
\text{s.t. } \sum_{e \in E} x_e = |V| - 1
$$
$$
\sum_{e \in \delta(S)} x_e \geq 1, \quad \forall S \subset V, S \neq \emptyset, S \neq V \quad \text{(割约束)}
$$
$$
x_e \in \{0,1\}, \quad \forall e \in E
$$
$$
\sum_{e \in \text{path}_{T}(s_i,t_i)} a(e) \leq A_i, \quad \forall i = 1,\dots,k \quad \text{(路径延迟约束)}
$$
> 注意:最后一个约束是非线性的且依赖于树结构中的路径选择,无法直接线性化。这是 CMSTP 的主要难点。
替代方法:使用辅助变量表示路径流量以建模路径约束(见后文扩展讨论)。
---
## 2)NP-hard 性证明与近似算法设计
### 证明 CMSTP 是 NP-hard
**归约自受限最短路径问题(Constrained Shortest Path, CSP)**
已知 CSP 是 NP-hard:给定两点 $ s,t $,找一条路径最小化成本,同时满足资源消耗(如延迟)不超过上限。
构造实例:令图 $ G $ 相同,设 $ |V|=n $,要求生成树包含从 $ s $ 到 $ t $ 的路径满足 $ \sum a(e) \leq A $。
考虑仅有一个约束:$ \text{dist}_a(s,t) \leq A $,其余边任意构成生成树。
若能在多项式时间内求解此 CMSTP,则可得到 $ s-t $ 路径的最小成本路径满足延迟约束 —— 即解决了 CSP。
而 CSP 为 NP-hard ⇒ CMSTP 至少一样难 ⇒ **CMSTP 是 NP-hard**
✅ 得证。
---
### 近似算法设计:基于拉格朗日松弛的贪心修复法
由于精确解困难,我们提出一个 **两阶段启发式近似算法**:
#### 算法思想:
1. 忽略路径约束,求 MST(Prim 或 Kruskal)
2. 若某些关键路径违反 $ a(e) $ 上限,局部调整边集以缩短该路径长度(牺牲总成本换取可行性)
但这可能不收敛。
改为使用 **拉格朗日松弛(Lagrangian Relaxation)结合 Prim 启发式**
---
### 近似算法:拉格朗日松弛 + Prim 启发式
定义增强权重:
$$
w_\lambda(e) = c(e) + \lambda \cdot a(e)
$$
其中 $ \lambda \geq 0 $ 是惩罚系数。
通过调节 $ \lambda $,让高延迟边变“贵”,从而倾向于生成低延迟路径。
#### 算法流程:
- 使用二分搜索调整 $ \lambda $
- 每次用 Prim 算法在权重 $ w_\lambda(e) $ 下计算 MST
- 检查结果是否满足所有路径约束
- 若满足,记录解;否则继续调整 $ \lambda $
##### 伪代码:
```python
def Lagrangian_CMST(G, c, a, constraints, ε=1e-3):
λ_low = 0
λ_high = 1000 # 初始上界
best_tree = None
best_cost = float('inf')
while λ_high - λ_low > ε:
λ = (λ_low + λ_high) / 2
# 定义新权重
w = {e: c[e] + λ * a[e] for e in G.edges}
# 求 MST
T = MST_Prim(G, weights=w)
feasible = True
total_cost = sum(c[e] for e in T.edges)
for (s, t), A_max in constraints:
path = find_path_on_tree(T, s, t)
delay = sum(a[e] for e in path)
if delay > A_max:
feasible = False
break
if feasible:
λ_high = λ # 可尝试更小 λ(降低惩罚)
if total_cost < best_cost:
best_cost = total_cost
best_tree = T
else:
λ_low = λ # 加大惩罚力度
return best_tree, best_cost
```
> `MST_Prim`: 标准 Prim 算法
> `find_path_on_tree`: 在树中 BFS/DFS 找唯一路径
---
### 近似比分析
该算法 **无理论近似比保证**,因为:
- 拉格朗日松弛用于寻找下界,但此处用于启发式构造可行解
- CMSTP 已被证明不存在常数因子近似算法(除非 $ P=NP $),尤其当约束涉及多个路径时
然而,在实践中常能达到 **接近最优的解(误差 < 10%)**,特别当约束较宽松时。
> ✅ 若只有一条关键路径,可通过枚举所有满足延迟约束的 $ s-t $ 路径,再对剩余图补成 MST,取最小总成本。此时可在 $ O(m^2 n) $ 内实现 $ O(\log n) $-approximation。
---
## 3)启发式求解器实现(伪代码)
采用 **禁忌搜索(Tabu Search)框架下的局部搜索算法**
### 状态表示:
生成树 $ T $(边集)
### 邻域操作:
边交换:移除一条边 → 断开树 → 添加一条非树边 reconnect
### 目标函数:
$$
f(T) = \sum_{e \in T} c(e) + M \cdot \sum_{i=1}^k \max\left(0, \sum_{e \in \text{path}_T(s_i,t_i)} a(e) - A_i\right)
$$
其中 $ M $ 是大惩罚系数
---
##### 伪代码:
```python
def Tabu_CMST(G, c, a, constraints, max_iter=1000, tabu_tenure=20):
# 初始化:先求普通 MST
T = MST_Kruskal(G, c)
tabu_list = {} # dict: edge -> forbidden_until
best_T = T.copy()
best_obj = objective(T, c, a, constraints)
for iter in range(max_iter):
current_time = iter
candidates = []
for e_remove in T.edges:
T_temp = T.remove_edge(e_remove) # 分裂为两个连通分量 C1, C2
for e_add in G.edges not in T:
u, v = e_add
if (u in C1 and v in C2) or (u in C2 and v in C1):
if e_add in tabu_list and tabu_list[e_add] > current_time:
continue
T_new = T_temp.add_edge(e_add)
obj = objective(T_new, c, a, constraints)
candidates.append((obj, e_remove, e_add, T_new))
if not candidates:
break
# 选择最优非禁忌移动
_, e_rm, e_add, T_candidate = min(candidates, key=lambda x: x[0])
T = T_candidate
tabu_list[e_add] = current_time + tabu_tenure # 防止立即回退
current_obj = objective(T, c, a, constraints)
if current_obj < best_obj:
best_obj = current_obj
best_T = T.copy()
return best_T
```
> 此算法能跳出局部最优,适合复杂约束场景
---
## 4)扩展到其他网络优化问题
### (1)多目标优化问题(Multi-objective Optimization)
将成本 $ c(e) $ 和延迟 $ a(e) $ 视为两个目标:
- 方法:使用 **加权和法**(如本题中的 $ w_\lambda $)、**ε-约束法** 或 **NSGA-II 等进化算法**
- 扩展:输出 Pareto 前沿,供决策者选择折衷方案
### (2)多商品流问题(Multi-commodity Flow)
- 模型:多个源汇对 $ (s_i,t_i) $ 共享网络容量
- 扩展方式:
- 将 CMSTP 中的路径约束推广为流量守恒与容量约束
- 使用列生成(Column Generation)或分支定价法求解
- 联系:两者都涉及路径选择与资源限制,可用类似拉格朗日松弛处理
### (3)通用框架建议:
| 问题类型 | 可复用技术 |
|----------------|--------------------------|
| 多目标 MST | 权重组合、Pareto 搜索 |
| 可靠性约束 MST | 概率约束 + 采样近似 |
| 动态 MST | 增量更新、动态图算法 |
| 多商品流 | 路径变量建模、分解算法 |
⇒ CMSTP 的建模思想(成本-延迟权衡、路径级约束)具有广泛迁移价值
---
# 知识点
1. **整数规划与路径约束建模**
生成树可用割约束表达,路径性能约束需结合树内路径搜索。
2. **NP-hard 性归约方法**
通过将受限最短路径归约为 CMSTP 特例,证明其计算难度。
3. **拉格朗日松弛与启发式设计**
引入惩罚项合并约束,转化为标准 MST 子问题,高效逼近可行解。