假设我们现在要求
G(N,k)=∑N−1i=0ik
N≤1018,k≤105
结果对998244353取模
通常的思路是直接枚举 i ,但此时的
为了解决这题,我们先引入一个量——-伯努利数 Bi
其定义为
B0=1
∑ni=0Cin+1Bi=0,n>0
也可以用幂级母函数来表示
xex−1=∑i≥0Bi∗xii!
我们再定义一个多项式 Bn(t)
Bn(t)=∑k=0n−1Bk∗tn−
假设我们现在要求
G(N,k)=∑N−1i=0ik
N≤1018,k≤105
结果对998244353取模
通常的思路是直接枚举 i ,但此时的
为了解决这题,我们先引入一个量——-伯努利数 Bi
其定义为
B0=1
∑ni=0Cin+1Bi=0,n>0
也可以用幂级母函数来表示
我们再定义一个多项式 Bn(t)