自然数幂和 伯努利数

该文探讨如何高效计算大数N(≤10^18)的幂和G(N,k),其中k(≤10^5)的值较小。通过引入伯努利数并利用其性质,将问题转化为求多项式的逆元,最终利用FFT算法在O(KlogK+K)的时间复杂度内得出结果。" 111584493,10296462,ABB机器人课程:WHILE指令详解与应用,"['工业机器人', '编程', '控制指令', 'ABB', '教学']
摘要由CSDN通过智能技术生成

假设我们现在要求
G(N,k)=N1i=0ik
N1018,k105
998244353

通常的思路是直接枚举 i ,但此时的 N 非常大,所以我们只能考虑转化问题。

为了解决这题,我们先引入一个量——-伯努利数 Bi

其定义为
B0=1
ni=0Cin+1Bi=0n>0

也可以用幂级母函数来表示

xex1=i0Bixii!

我们再定义一个多项式 Bn(t)

Bn(t)=k=0n1Bktn
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值