关闭

PCA主成份分析(Spark 2.0)

标签: spark
1627人阅读 评论(4) 收藏 举报
分类:

PCA在Spark2.0用法比较简单,只需要设置:
.setInputCol(“features”)//保证输入是特征值向量
.setOutputCol(“pcaFeatures”)//输出
.setK(3)//主成分个数
注意:PCA前一定要对特征向量进行规范化(标准化)!!!


//Spark 2.0 PCA主成分分析
//注意:PCA降维前必须对原始数据(特征向量)进行标准化处理
package my.spark.ml.practice;

import org.apache.spark.ml.feature.PCA;
import org.apache.spark.ml.feature.PCAModel;//不是mllib
import org.apache.spark.ml.feature.StandardScaler;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;


public class myPCA {

    public static void main(String[] args) {
        SparkSession spark=SparkSession
                .builder()
                .appName("myLR")
                .master("local[4]")
                .getOrCreate();
        Dataset<Row> rawDataFrame=spark.read().format("libsvm")
          .load("/home/hadoop/spark/spark-2.0.0-bin-hadoop2.6" +
                "/data/mllib/sample_libsvm_data.txt");
        //首先对特征向量进行标准化
        Dataset<Row> scaledDataFrame=new StandardScaler()
                  .setInputCol("features")
                  .setOutputCol("scaledFeatures")
                  .setWithMean(false)//对于稀疏数据(如本次使用的数据),不要使用平均值
                  .setWithStd(true)
                  .fit(rawDataFrame)
                  .transform(rawDataFrame);
        //PCA Model
        PCAModel pcaModel=new PCA()
                      .setInputCol("scaledFeatures")
                      .setOutputCol("pcaFeatures")
                      .setK(3)//
                      .fit(scaledDataFrame);
        //进行PCA降维
        pcaModel.transform(scaledDataFrame).select("label","pcaFeatures").show(100,false);      
    }
}

/**
 * 没有标准化特征向量,直接进行PCA主成分:各主成分之间值变化太大,有数量级的差别。
+-----+------------------------------------------------------------+
|label|pcaFeatures                                                 |
+-----+------------------------------------------------------------+
|0.0  |[-1730.496937303442,6.811910953794295,2.8044962135250024]   |
|1.0  |[290.7950975587044,21.14756134360174,0.7002807351637692]    |
|1.0  |[149.4029441007031,-13.733854376555671,9.844080682283838]   |
|1.0  |[200.47507801105797,18.739201694569232,22.061802015132024]  |
|1.0  |[236.57576401934855,36.32142445435475,56.49778957910826]    |
|0.0  |[-1720.2537550195714,25.318146742090196,2.8289957152580136] |
|1.0  |[285.94940382351075,-6.729431266185428,-33.69780131162192]  |
|1.0  |[-323.70613777909136,2.72250162998038,-0.528081577573507]   |
|0.0  |[-1150.8358810584655,5.438673892459839,3.3725913786301804]  |
 */
/**
 * 标准化特征向量后PCA主成分,各主成分之间值基本上在同一水平上,结果更合理
 |label|pcaFeatures                                                  |
+-----+-------------------------------------------------------------+
|0.0  |[-14.998868464839624,-10.137788261664621,-3.042873539670117] |
|1.0  |[2.1965800525589754,-4.139257418439533,-11.386135042845101]  |
|1.0  |[1.0254645688925883,-0.8905813756164163,7.168759904518129]   |
|1.0  |[1.5069317554093433,-0.7289177578028571,5.23152743564543]    |
|1.0  |[1.6938250375084654,-0.4350617717494331,4.770263568537382]   |
|0.0  |[-15.870371979062549,-9.999445137658528,-6.521920373215663]  |
|1.0  |[3.023279951602481,-4.102323190311296,-9.451729897327345]    |
|1.0  |[3.500670997961283,-4.1791886802435805,-9.306353932746568]   |
|0.0  |[-15.323114679599747,-16.83241059234951,2.0282183995400374]  |
*/

如何选择k值?

//PCA Model
        PCAModel pcaModel=new PCA()
                      .setInputCol("scaledFeatures")
                      .setOutputCol("pcaFeatures")
                      .setK(100)//
                      .fit(scaledDataFrame);
        int i=1;
        for(double x:pcaModel.explainedVariance().toArray()){
        System.out.println(i+"\t"+x+"  ");
        i++;
        }
输出100个降序的explainedVariance(和scikit-learn中PCA一样):
1   0.25934799275530857  
2   0.12355355301486977  
3   0.07447670060988294  
4   0.0554545717486928  
5   0.04207050513264405  
6   0.03715986573644129  
7   0.031350566055423544  
8   0.027797304129489515  
9   0.023825873477496748  
10  0.02268054946233242  
11  0.021320060154167115  
12  0.019764029918116235  
13  0.016789082901450734  
14  0.015502412597350008  
15  0.01378190652256973  
16  0.013539546429755526  
17  0.013283518226716669  
18  0.01110412833334044  
...

这里写图片描述
大约选择20个主成分就足够了
随便做一个图可以选择了(详细可参考Scikit-learn例子)
http://scikit-learn.org/stable/auto_examples/plot_digits_pipe.html

Scikit中使用PCA

参考http://blog.csdn.net/u012162613/article/details/42192293
sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
参数说明:

n_components:
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
赋值为int,比如n_components=1,将把原始数据降到一个维度。
赋值为string,比如n_components=’mle’,将自动选取特征个数n,使得满足所要求的方差百分比。
copy:
类型:bool,True或者False,缺省时默认为True。
意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不 会有任何改变,因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的 值会改,因为是在原始数据上进行降维计算。
whiten:
类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。关于“白化”,可参考:Ufldl教程

简单例子:

#!/usr/bin/env python2
# -*- coding: utf-8 -*-


from sklearn import datasets
from sklearn.decomposition import PCA


iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=3)
X_r = pca.fit(X).transform(X)
print "X_r"
print X_r

print "X"
print X

print "pca.explained_variance_ratio"
print pca.explained_variance_ratio_
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:95090次
    • 积分:1372
    • 等级:
    • 排名:千里之外
    • 原创:41篇
    • 转载:13篇
    • 译文:1篇
    • 评论:19条
    文章分类
    最新评论