文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
本文主要介绍scikit-learn中的模型的保存与加载。
- Demo 1
import pickle
from sklearn.svm import SVC
from sklearn import datasets
# 定义分类器
svm = SVC()
# 加载iris数据集
iris = datasets.load_iris()
# 读取特征
X = iris.data
# 读取分类标签
y = iris.target
# 训练模型
svm.fit(X, y)
# 保存成python支持的文件格式pickle, 在当前目录下可以看到svm.pickle
with open('svm.pickle', 'wb') as fw:
pickle.dump(svm, fw)
# 加载svm.pickle
with open('svm.pickle', 'rb') as fr:
new_svm = pickle.load(fr)
print new_svm.predict(X[0:1])
- 结果
[0]
- Demo 2
from sklearn.externals import joblib
from sklearn.svm import SVC
from sklearn import datasets
# 定义分类器
svm = SVC()
# 加载iris数据集
iris = datasets.load_iris()
# 读取特征
X = iris.data
# 读取分类标签
y = iris.target
# 训练模型
svm.fit(X, y)
# 保存成sklearn自带的文件格式
joblib.dump(svm, 'svm.pkl')
# 加载svm.pkl
new_svm = joblib.load('svm.pkl')
print new_svm.predict(X[0:1])
- 结果
[0]