关闭

SIFT学习--舍弃不合适的特征点

1636人阅读 评论(1) 收藏 举报
分类:

这里需要去除之前所获得的特征点中的低对比度的点和不稳定的边缘响应点。

1.去除低对比度的点

将之前算得到的亚像素精度点的值代入泰勒展开式,并只取前两项:


其中,可以用来衡量特征点的对比度,如果小于一个经验值,那该特征点就被划归为一个不稳定特征点,就应该去除。
这个经验值一般为0.03

2.去除不稳定的边缘响应点

因为DoG算子会产生较强的边缘响应,所以应该去除一些不太稳定的边缘响应点。一个定义不好的边缘响应点会在横跨边缘具有较大的主曲率,而在垂直边缘具有较小的主曲率,主曲率可以通过2*2的Hessian矩阵H求出:

其中D值可以通过求取邻近像素点的差分得到,H的特征值与D的主曲率成正比,所以我们可以避免求Hessian矩阵的具体特征值,而只需要关心特征值的比例。
令最大的特征值为,最小的特征值为,其中
那我们可以的到如下的式子:


第一个式子是Hessian矩阵的迹,第二个式子是Hessian矩阵的行列式

我们可以很轻松的得到以下的式子:

显然,上面的结果只与两个特征值 的比例有关,当两个特征值相等时,上式的值最小,随着比例的增大,上式的值也逐渐增大。
因此,如果要检查主曲率的比例是否小于某个阈值,只需要判断下式是否成立:


一般来说主曲率的比值,也就是的经验值为10
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:25285次
    • 积分:389
    • 等级:
    • 排名:千里之外
    • 原创:15篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论