SIFT学习--舍弃不合适的特征点

原创 2012年03月28日 22:26:15

这里需要去除之前所获得的特征点中的低对比度的点和不稳定的边缘响应点。

1.去除低对比度的点

将之前算得到的亚像素精度点的值代入泰勒展开式,并只取前两项:


其中,可以用来衡量特征点的对比度,如果小于一个经验值,那该特征点就被划归为一个不稳定特征点,就应该去除。
这个经验值一般为0.03

2.去除不稳定的边缘响应点

因为DoG算子会产生较强的边缘响应,所以应该去除一些不太稳定的边缘响应点。一个定义不好的边缘响应点会在横跨边缘具有较大的主曲率,而在垂直边缘具有较小的主曲率,主曲率可以通过2*2的Hessian矩阵H求出:

其中D值可以通过求取邻近像素点的差分得到,H的特征值与D的主曲率成正比,所以我们可以避免求Hessian矩阵的具体特征值,而只需要关心特征值的比例。
令最大的特征值为,最小的特征值为,其中
那我们可以的到如下的式子:


第一个式子是Hessian矩阵的迹,第二个式子是Hessian矩阵的行列式

我们可以很轻松的得到以下的式子:

显然,上面的结果只与两个特征值 的比例有关,当两个特征值相等时,上式的值最小,随着比例的增大,上式的值也逐渐增大。
因此,如果要检查主曲率的比例是否小于某个阈值,只需要判断下式是否成立:


一般来说主曲率的比值,也就是的经验值为10
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

sift特征点检测的学习demo

  • 2013-03-12 16:08
  • 5.52MB
  • 下载

OpenCV中feature2D学习——SURF和SIFT算子实现特征点检测

在opencv的features2d中实现了SIFT和SURF算法,可以用于图像特征点的自动检测。具体实现是采用SurfFeatureDetector/SiftFeatureDetector类的det...

Matlab图像处理学习笔记(八):用广义霍夫变换筛选sift特征点

经过几天的学习研究,终于完成了广义霍夫变换(Generalised Hough transform)对特征点的筛选。此法不仅仅针对sift特征点,surf,Harris等特征点均可适用。 这几天我发...

Matlab图像处理学习笔记(六):基于sift特征点的人民币识别

本文记录如何利用sift特征点进行人民币的识别。本文给出的matlab源码识别了1元与100元人民币的面额,相同思路,可以对各种币值的人民币进行面额、正反面的识别。但由于本程序采用串行,模板数的增多会...

特征点检测学习_1(sift算法)

特征点检测学习_1(sift算法)       sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记。本文...

OpenCV中feature2D学习——SIFT和SURF算子实现特征点提取与匹配

概述       之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点...

SIFT学习--确定特征点的方向

为了保证特征点的方向不变性,我们必须确定特征点的方向。 我们知道,确定一个点的梯度方向有如下公式: 其中为(x,y)处的梯度大小而为该点的梯度方向。 我们在以特征点为中心的邻域窗...
  • ro9er
  • ro9er
  • 2012-03-28 22:44
  • 2587

opencv 特征点提取算法 SIFT SURF ORB FAST LBP学习(二)

demo: http://download.csdn.net/detail/keen_zuxwang/9852587MainActivity.java:... public int doFeature...

特征点检测学习_1(sift算法)

sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记。本文比较早的一篇博文opencv源码解析之(3):特征点检查...

SIFT学习--特征点获取

通过前两节的工作,我们获得了尺度空间和DoG,这些量保证了尺度不变性,接下来我们就要获取特征点。 获取特征点有两个部分: 1. 定位DoG图像中的极大值点和极小值点 特征点的定位是通过同一组内各...
  • ro9er
  • ro9er
  • 2012-03-28 21:56
  • 1189
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)