SIFT学习--舍弃不合适的特征点

本文介绍了SIFT算法中如何筛选特征点,主要涉及两个步骤:一是剔除低对比度的特征点,以确保选取的点具有足够的显著性;二是去除不稳定的边缘响应点,提高特征点的稳定性。
摘要由CSDN通过智能技术生成

这里需要去除之前所获得的特征点中的低对比度的点和不稳定的边缘响应点。

1.去除低对比度的点
将之前算得到的亚像素精度点的值代入泰勒展开式,并只取前两项:


其中, 可以用来衡量特征点的对比度,如果 小于一个经验值,那该特征点就被划归为一个不稳定特征点,就应该去除。
这个经验值一般为0.03
2.去除不稳定的边缘响应点
因为DoG算子会产生较强的边缘响应,所以应该去除一些不太稳定的边缘响应点。一个定义不好的边缘响应点会在横跨边缘具有较大的主曲率,而在垂直边缘具有较小的主曲率,主曲率可以通过2*2的Hessian矩阵H求出:

其中D值可以通过求取邻近像素点的差分得到,H的特征值与D的主曲率成正比,所以我们可以避免求Hessian矩阵的具体特征值,而只需要关心特征值的比例。
令最大的特征值为
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值