自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(149)
  • 资源 (2)
  • 收藏
  • 关注

原创 人脸识别——DSIFT+Fisher Vecttor Coding

本次介绍的是一种传统的人脸识别方法《2013-BMVC-Fisher Vector Faces in the Wild》.文章给出了数据和代码http://www.robots.ox.ac.uk/~vgg/software/face_desc/.我自己的验证的时候使用的是VLfeat开源工具包,很好用:http://www.vlfeat.org/index.html先来一个整个方法的流程图,然后再分

2016-06-01 15:20:52 6975

原创 MATLAB绘制caffe训练日志曲线

公司机器上,我是非管理员账户,python画图缺少一些库,但是又没有权限安装,所以考虑matlab。 使用MATLAB画caffe的训练日志,其实就是找规律; 代码如下:

2016-05-30 09:45:48 3497 2

原创 人脸识别:PairLoss

本次介绍的人脸识别方法,其核心贡献就是如何加快相似度的学习速度,这里所谓的相似度和一般意义上的Triplet Loss很像,即:相同身份的人脸距离较近,不同身份的人脸距离较远。方法来源于: 《arxiv:Learning a Metric Embedding for Face Recognition using the Multibatch Method》 Introduction 很多人脸识别

2016-05-28 16:59:41 6428

原创 caffe层解读系列-softmax_loss

Loss Function可选参数使用方法扩展使用Loss Functionsoftmax_loss的计算包含2步:(1)计算softmax归一化概率(2) 计算损失这里以batchsize=1的2分类为例: 设最后一层的输出为[1.2 0.8],减去最大值后为[0 -0.4], 然后计算归一化概率得到[0.5987 0.4013], 假如该图片的label为1,则Loss=-log0.

2016-05-20 13:07:53 32065

原创 Sublime Text3配置Markdown

1. 安装 Package Control1.菜单打开view->Show Console,或者直接快捷键Ctrl+`调出console 2.输入下列代码并回车import urllib.request,os; pf = 'Package Control.sublime-package'; ipp = sublime.installed_packages_path(); urllib.reques

2016-05-19 15:06:58 1240

原创 深度学习——缩减+召回加速网络训练

本次介绍的是怎样通过对训练数据进行缩减以及召回而加快网络训练速度,《Accelerating Deep Learning with Shrinkage and Recall》。这篇文章给人的感受就是:想法很简单,实现的也很粗糙。但是,问题的角度比较新颖,而且感觉有很大空间可以继续挖掘。 Motivation实现Motivation深度神经网络训练比较慢,原因基本可以归为2个方面:模型太大 和

2016-05-17 21:37:28 2538

转载 Opencv 完美配置攻略 2014 (Win8.1 + Opencv 2.4.8 + VS 2013)

原文地址为:http://my.phirobot.com/blog/2014-02-opencv_configuration_in_vs.html2012年4月给同学写了篇傻瓜式的 VS2010+Opencv-2.4.0的配置攻略 结果没有想到,点击量一路飙升,固定在了Google “Opencv 配置” 关键词搜索的榜首。现在看看,已经过时了,版本升级后看不到ttb了,还有很多不

2016-05-13 13:51:27 2081

原创 VS2013 配置 VLFeat

VLFeat是一个类似opencv的开源计算机视觉库,配置简单,代码高效,非常好用。项目主页为 http://www.vlfeat.org/index.html首先到http://www.vlfeat.org/download.html下载bin文件包并解压。(1)将解压路径添加到系统变量PATH中(2)新建VS2013空项目并配置编译器选择所有配置,并根据自己的系统类型选择平台(我这里新建为X64

2016-05-12 19:22:04 2774

原创 神经网络压缩:Deep Compression

本次介绍的方法为“深度压缩”,文章来源与2016ICLR最佳论文 《Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman CodingIntroduction神经网络功能强大。但是,其巨大的存储和计算代价也使得其实用性特别是在移动设备上的应用受到了很大限制。所

2016-05-12 14:22:03 19586 3

原创 深度学习——MSRA初始化

本次简单介绍一下MSRA初始化方法,方法同样来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》.MotivationMSRA初始化推导证明补充说明Motivation网络初始化是一件很重要的事情。但是,传统的固定方差的高斯分布初始化,在

2016-05-08 20:43:47 30371 1

原创 深度学习——PReLU激活

本次介绍PReLU激活函数以及MSRA初始化方法,方法来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》.PReLU激活PReLU(Parametric Rectified Linear Unit), 顾名思义:带参数的ReLU。二者的定义和区

2016-05-08 15:22:46 77311

原创 深度学习——Xavier初始化方法

“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。基于这个目标,现在我们就去推导一下:每一层的权

2016-05-07 18:39:44 145063 19

原创 caffe添加新层教程

时间节点2016.04,即caffe重大更新后(每一种层都对应一个同名cpp和hpp文件)。描述一下本次要实现层的功能:正向直接copy传播,反向时将梯度放缩指定倍。这个层对一些特定的网络结构有很重要的辅助作用,比如有时我们的网络存在分支,但我们不希望某一分支影响之前层的更新,那么我们就将梯度放缩0倍。(1)创建HPP头文件diff_cutoff_layer.hpp不同...

2016-05-05 15:00:04 36640 10

原创 VS编译生成MATLAB接口程序

实验平台:win10 64bit + VS2013 +MATLAB2014 64bit 首先说明一下我为什么要在VS下编译生成.mexw64文件,而不是直接在MATLAB里面进行mex编译:因为前者可以更加方便的附加dll和lib等链接库文件,而且后面调试起来也更加方便。(1)创建VS项目,选择Win32控制台应用程序,附加选项空项目。(2)在项目里面添加自己的头文件以及源文件。然后“源文件”右键“

2016-05-02 20:59:57 7037

原创 GoogLeNet系列解读

本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构。GoogLeNet Incepetion V1Motivation Architectural DetailsGoogLeNetConclusionGoogLeNet Inception V2IntroductionGeneral Design PrinciplesFactorizi

2016-02-25 15:56:29 155236 67

原创 解读Batch Normalization

目录目录1-Motivation2-Normalization via Mini-Batch Statistics测试BN before or after Activation3-Experiments本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training b

2016-02-23 16:03:23 30784 4

原创 系列解读Dropout

本文主要介绍Dropout及延伸下来的一些方法,以便更深入的理解。想要提高CNN的表达或分类能力,最直接的方法就是采用更深的网络和更多的神经元,即deeper and wider。但是,复杂的网络也意味着更加容易过拟合。于是就有了Dropout,大部分实验表明其具有一定的防止过拟合的能力。

2016-01-25 16:04:10 7428 1

原创 多尺度竞争卷积

此次所讲内容来自《Competitive Multi-scale Convolution》, 时间节点2015.121-模型先来看看作者最开始设计的模型:这里着重说明一下Maxout:从r1、r2、r3、r4中选择最大的响应作为输出。由于K*K大小的卷积操作中都采取了pad=K/2、stride=1的操作,因此r1、r2、r3、r4的大小是一致的。增加了Max pooling,最终得到了下图的网络基

2016-01-12 15:40:46 7683 1

原创 NMS——卷积网络改进实现

本文介绍了用卷积神经网络改进传统NMS的方法,文章来源于2016ICLR《A CONVNET FOR NON-MAXIMUM SUPPRESSION》,该文章状态为正在审核。1-传统的NMS2-NMS-ConvNet2-1 映射制作score map2-2 制作IOU层2-3 网络解析2-4 输出及Loss未完待续

2015-12-21 14:48:28 17433 2

原创 人脸检测——CascadeCNN

本文介绍的人脸检测方法,来源于2015CVPR《A Convolutional Neural Network Cascade for Face Detection》。本篇文章的方法可以说是对经典的Viola jones方法的深度卷积网络实现,并没有让人眼前一亮的地方,但依然有以下几点可以学习。(1)网络级联下图是该方法的整个流程示意图,可以明显看出是3阶级联(12-net、24-net、48-net

2015-12-19 18:24:01 16609 2

原创 mxnet学习记录【1】

由于caffe依赖性太多,配置极其复杂,所以将接下来的学习转向mxnet.因此本文主要记录我的学习历程,如果描述有什么问题,欢迎大家的指正。mxnet的优点很明显,简洁灵活效率高 ,多机多卡支持好。mxnet的github下载链接:https://github.com/dmlc/mxnet/mxnet的开发文档链接:http://mxnet.readthedocs.org/en/latest/bui

2015-12-01 18:42:18 29633 4

原创 人脸检测——DDFD

本文所介绍的人脸检测,主要学习和实现了ICMR-2015年雅虎实验室的文章”Multi-view Face Detection Using Deep Convolutional Neural Networks”.这是我接触和实现的第一个深度学习案例,本文除了讲解该文的算法以外,也是对我近2个月工作的总结.学习还不够深入,有不足之处欢迎大家提出指正。此外,本文在讲解的过程中会包含全部的源代码以及训练

2015-11-22 23:50:28 30054 54

翻译 Rapid object detection using a boosted cascade of simple features-简译

原文参照Paul_Viola的《Rapid object detection using a boosted cascade of simplefeatures》本次翻译,包含简单的个人总结以方便理解文章。翻译内容可以主要关注前4节,以便于快速把握文章内容。具体的分类器如何训练如何级联,后续会有博文详细解读。  翻译理解如果有问题的话,大家可以提出来。简单特征的优化级联在快

2015-04-06 08:29:27 4219

转载 [转]ROC曲线-阈值评价标准

转自:http://blog.csdn.net/abcjennifer/article/details/7359370ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从

2015-04-05 16:28:36 2286

原创 1-Haar特征的特点及计算

1.Haar特征         最早的Haar特征由PapageorgiouC.等提出(《A general framework for object detection》),后来PaulViola和Michal Jones提出利用积分图像法快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simplefea

2015-03-27 14:45:51 9996 1

原创 MATLAB 调用编译.c/.cpp文件

1、设置编译器在命令窗口输入 mex -setup,根据提示选择合适的编译器。通常我们使用的都是“Microsoft Visual C++”编译器。如果编译器设置有问题,具体可以到官网查看不同MATLAB支持的编译器类型以及具体的问题。不过,通常都不会有问题。MathWorks 支持:http://cn.mathworks.com/help/matlab/call-mex-files-

2015-03-25 18:31:36 7999

转载 来自西弗吉利亚大学li xin整理的CV代码合集(转)

目录(?)[-]Image denoisingImage codingImage demosaicingImage interpolation and SuperresolutionRGBD image processingImage segmentationparsing and mattingImage deblurringBlind image deblurringTexture s

2015-03-24 15:25:02 6962

转载 计算机视觉领域的一些牛人博客,超有实力的研究机构web主页(转)

转载自:blog.csdn.net/carson2005        以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应用情况等等。打算从事这个行业或者刚入门的朋友可以多关注这些网站,多了解一些CV的具体应用。搞研究的朋友也可以从中了解到很多牛人的

2015-03-24 15:22:51 6816

转载 计算机视觉、机器学习相关领域论文和源代码大集合(转)

注:下面有project网站的大部分都有paper和相应的code。Code一般是C/C++或者Matlab代码。最近一次更新:2013-3-17一、特征提取Feature Extraction:·         SIFT [1] [Demo program][SIFT Library] [VLFeat]·         PCA-SIFT [2] [

2015-03-24 15:19:45 2216

MKL最全说明文档

MKL的最全说明文档,包含C、Fortran 和 Fortran 95的说明

2016-10-14

MKL——最全说明文档

MKL最全说明文档,支持C、Fortran 和 Fortran 95

2016-10-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除