本次简单介绍一下MSRA初始化方法,方法同样来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》.
Motivation
网络初始化是一件很重要的事情。但是,传统的固定方差的高斯分布初始化,在网络变深的时候使得模型很难收敛。此外,VGG团队是这样处理初始化的问题的:他们首先训练了一个8层的网络,然后用这个网络再去初始化更深的网络。
“Xavier”是一种相对不错的初始化方法,我在我的另一篇博文“深度学习——Xavier初始化方法”中有介绍。但是,Xavier推导的时候假设激活函数是线性的,显然我们目前常用的ReLU和PReLU并不满足这一条件。
MSRA初始化
只考虑输入个数时,MSRA初始化是一个均值为0方差为2/n的高斯分布:
推导证明
推导过程与Xavier类似。
首先,用下式表示第L层卷积: