本系列主要采用Python-sklearn实现,环境搭建可参考 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式).
相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.
3.4 比较k折交叉验证法与留一法
本题采用UCI中的 Iris Data Set 和 Blood Transfusion Service Center Data Set,基于sklearn完成练习(查看完整代码)。
关于数据集
本文对比分析了k折交叉验证法与留一法在处理iris和blood-transfusion数据集时的效果。通过sklearn库实现,发现两种方法在iris数据集上精度都很高,而在blood-transfusion数据集中,虽然结果相近,但LOOCV运行时间更长。通常情况下,k折交叉验证在保证精度的同时,运算效率更高。
本系列主要采用Python-sklearn实现,环境搭建可参考 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式).
相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.
本题采用UCI中的 Iris Data Set 和 Blood Transfusion Service Center Data Set,基于sklearn完成练习(查看完整代码)。
关于数据集
1万+
9898

被折叠的 条评论
为什么被折叠?