《机器学习》西瓜数课后题3.4

博主通过Python实现了机器学习课后题3.4,采用梯度下降法对Iris数据集进行训练。10折交叉验证和留一验证结果显示,正确率均较高,表明模型表现良好。

《机器学习》课后题3.4

这次选了梯度下降法,结论就是10折法跟留一法差不多,正确率都挺高的!没有用网上的数据,用了sklearn里面自带的iris花的数据,可能数据比较好,所以出来结果也比较好!

python代码

from math import exp
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris


def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]


def tenfolddata(positive_data, negative_data):
    fold_data = []
    for i in range(10):
        pos_temp = positive_data[i * 5: (i+1) * 5].tolist()
        neg_temp = negative_data[i * 5: (i+1) * 5].tolist()
        temp = pos_temp + neg_temp
        fold_data += temp
    return np.array(fold_data)


x, y = create_data()
x_negative = x[:50]
x_positive = x[50:]
x_tenfold_test = tenfolddata(x_positive, x_negative)
y_tenfold_test = np.array([[1]] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值