在很多情况下,在两幅相似图像中如能找到到对应点对,将非常有利;当我们在考虑几何变换时,确定对应的位置后,就可以从实际数据中估计出反映几何变换的参数。一般来说,像素的所有可能对应都被检查,以解决对应问题,而这在计算上又非常耗时。如果两幅图像都有n个像素,若对应关系只在一个小多了的像素区域查找,则计算过程将可能大为简化。本节,我们选择典型兴趣点检测之Moravec检测器。
背景介绍
图像中的角点可使用局部检测器定位;角点检测器的输入为灰度图像,在输出图像中,像素值与原像素为角点的可能性成正比。通过对角点检测后的结果进行阈值化的处理,可得到兴趣点。在我们解决对应点问题时,角点的效果要好于线段。这是由光圈问题导致的。假设通过一小光圈,观测一个移运直线。这时,只有垂直于线段的运动分量才能被观察到时。与线段共线的分量则不可见。而用角点则要得多。如图5.34所示:
同时,边缘检测器在角点处并不稳定。当角点的梯度模糊时,这是很自然结果。如图5.35所示:
本文介绍了Moravec角点检测器的基本理论和工作原理,该检测器通过滑动窗口计算灰度变化的局部最大值来寻找图像中的角点。虽然存在误检和对旋转的不稳定性,但它是角点检测领域的一个重要基础,对后续算法产生了深远影响。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



