主要内容 |
|
1. | 集合的等势与优势 |
2. | 集合的基数 |
学习要求 |
|
1. | 掌握:集合之间等势与优势的概念,等势的性质(自反性,对称性,传递性) |
2. | 掌握:证明集合等势的方法,康托定理的内容及证明方法 |
3. | 掌握:自然数、自然数集、有穷集、无穷集的定义与主要性质 |
4. | 掌握:集合基数的定义、基数的比较、可数集的定义与主要性质 |
集合的等势与优势
集合的等势
通俗的说,集合的势是量度集合所含元素多少的量。集合的势越大,所含的元素越多。
定义9.1设A,B是集合,如果存在着从A到B的双射函数,就称A和B是等势的,记作A≈B。如果A不与B等势,则记作AB。
下面给出一些集合等势的例子。
例9.1 (1) Z≈N。回顾上一章例8.6(3),令
f:Z→N,
则f是Z到N的双射函数。从而证明了Z≈N。
(2) N×N≈N. 为建立N×N到N的双射函数,只需把中所有的元素排成一个有序图形,如图9.1所示。N×N中的元素恰好是坐标平面上第一象限(含坐标轴在内)中所有整数坐标的点。如果能够找到“数遍”这些点的方法,这个计数过程就是建立N×N到N的双射函数的过程。按照图中箭头所标明的顺序,从<0,0>开始数起,依次得到下面的序列:
<0,0>,<0,1>,<1,0>,<0,2>,<1,1>,<2,0>,…
↓ ↓ ↓ ↓ ↓ ↓
0 1 2 3 4 5
设<m,n>是图上的一个点,并且它所对应的自然数是k。考察m,n,k之间的关系。首先计数<m,n>点所在斜线下方的平面上所有的点数,是
![]() |


k=

根据上面的分析,不难给出N×N到N的双射函数f,即
f:N×N→N
f(<m,n>)=

等势的性质
以上已经给出了若干等势的集合。一般说来,等势具有下面的性质:自反性,对称性和传递性。
定理9.1 设A,B,C是任意集合,
(1) A≈A。
(2) 若A≈B,则B≈A。
(3) 若A≈B,B≈C,则A≈C。
证明: 根据前面的分析和这个定理可以得到下面的结果:
N≈Z≈Q≈N×N
R≈[0,1]≈(0,1)
而后一个结果可以进一步强化成:任何的实数区间(包括开区间,闭区间以及半开半闭的区间)都与实数集合R等势。那么N与R是否等势呢?如果有N≈R,上面列出的所有集合彼此都是等势的;如果N


定理9.2 (康托定理)
(1) N

(2) 对任意集合A都有A

证 (1)如果能证明N


首先规定[0,1]中数的表示。对任意的x∈[0,1],令
x=0.x1x2…,0≤xi≤9
考察下述两个表示式:
0.24999… 和 0.25000…
显然它们是同一个x的表示。为了保证表示式的唯一性,如果遇到上述情况,则将x表示为0.25000…。根据这种表示法,任何函数f: N→[0,1]的值都可以用这种表示式给出。
设f: N→[0,1]是从N到[0,1]的任何一个函数。如下列出f的所有函数值:
f(0)=0.a1(1)a2(1)…
f(1)=0.