集合基数

主要内容

1. 集合的等势与优势 
2. 集合的基数 

学习要求


1. 掌握:集合之间等势与优势的概念,等势的性质(自反性,对称性,传递性) 
2. 掌握:证明集合等势的方法,康托定理的内容及证明方法 
3. 掌握:自然数、自然数集、有穷集、无穷集的定义与主要性质 
4.

掌握:集合基数的定义、基数的比较、可数集的定义与主要性质

集合的等势与优势

集合的等势


  通俗的说,集合的势是量度集合所含元素多少的量。集合的势越大,所含的元素越多。
定义9.1设A,B是集合,如果存在着从A到B的双射函数,就称A和B是等势的,记作A≈B。如果A不与B等势,则记作AB。
  下面给出一些集合等势的例子。

例9.1 (1) Z≈N。回顾上一章例8.6(3),令

    f:ZN,

则f是Z到N的双射函数。从而证明了Z≈N。

  (2) N×N≈N. 为建立N×N到N的双射函数,只需把中所有的元素排成一个有序图形,如图9.1所示。N×N中的元素恰好是坐标平面上第一象限(含坐标轴在内)中所有整数坐标的点。如果能够找到“数遍”这些点的方法,这个计数过程就是建立N×N到N的双射函数的过程。按照图中箭头所标明的顺序,从<0,0>开始数起,依次得到下面的序列:

    <0,0>,<0,1>,<1,0>,<0,2>,<1,1>,<2,0>,…
     ↓   ↓    ↓   ↓   ↓   ↓
     0    1    2    3    4    5

  设<m,n>是图上的一个点,并且它所对应的自然数是k。考察m,n,k之间的关系。首先计数<m,n>点所在斜线下方的平面上所有的点数,是

    1+2+…+(m+n)=
然后计数<m,n>所在的斜线上按照箭头标明的顺序位于<m,n>点之前的点数,是m.因此<m,n>点是第+m+1个点。这就得到
    k=+m
根据上面的分析,不难给出N×N到N的双射函数f,即

    f:N×N→N
    f(<m,n>)=+m

等势的性质


  以上已经给出了若干等势的集合。一般说来,等势具有下面的性质:自反性,对称性和传递性。
  定理9.1 设A,B,C是任意集合,
  (1) A≈A。
  (2) 若A≈B,则B≈A。
  (3) 若A≈B,B≈C,则A≈C。
  证明: 根据前面的分析和这个定理可以得到下面的结果:
    N≈Z≈Q≈N×N
    R≈[0,1]≈(0,1)
  而后一个结果可以进一步强化成:任何的实数区间(包括开区间,闭区间以及半开半闭的区间)都与实数集合R等势。那么N与R是否等势呢?如果有N≈R,上面列出的所有集合彼此都是等势的;如果NR,与N等势的那些集合也不会与R等势。下面证明NR。
定理9.2 (康托定理)
  (1) NR
  (2) 对任意集合A都有AP(A)。
   (1)如果能证明N[0,1],就可以断定NR.为此只需证明任何函数f:N→[0,1]都不是满射的。
  首先规定[0,1]中数的表示。对任意的x∈[0,1],令
    x=0.x1x2…,0≤xi≤9
考察下述两个表示式:
    0.24999… 和 0.25000…
显然它们是同一个x的表示。为了保证表示式的唯一性,如果遇到上述情况,则将x表示为0.25000…。根据这种表示法,任何函数f: N→[0,1]的值都可以用这种表示式给出。
  设f: N→[0,1]是从N到[0,1]的任何一个函数。如下列出f的所有函数值:
    f(0)=0.a1(1)a2(1)
    f(1)=0.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值