python内实现k-means聚类

《Python计算机视觉编程》学习笔记

from scipy.cluster.vq import *
import numpy as np
from matplotlib import pyplot as plt
class1=1.5*np.random.randn(100,2)
##print(class1)
class2=np.random.randn(100,2)+np.array([8,8])
##print(class2)
features=np.vstack((class1,class2))
centroids,variance=kmeans(features,2)
code,distance=vq(features,centroids)
plt.figure()
ndx=np.where(code==1)[0]
plt.plot(features[ndx,0],features[ndx,1],'*')
ndx=np.where(code==0)[0]
plt.plot(features[ndx,0],features[ndx,1],'r.')
plt.plot(centroids[:,0],centroids[:,1],'go')
plt.axis('off')
plt.show()









参考资料:

Python计算机视觉编程,第6章,P137


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superdont

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值