线性代数导论23——微分方程和exp(At)

本文介绍了如何利用线性代数解决微分方程,特别是涉及一阶向量方程。通过泰勒级数和幂级数,解释了矩阵指数e^At在微分方程中的应用,讨论了特征值和特征向量在解耦合和稳定性分析中的作用。此外,还探讨了不同特征值情况下的解的行为,以及如何将高阶微分方程转化为一阶方程组。
摘要由CSDN通过智能技术生成
本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第二十三课时:微分方程和exp(At)
本文涉及微分方程,如何解一阶方程,一阶导数,常系数线性方程,可以将他们转化为线性代数的问题,关键思路是:常系数线性方程的解是指数形式的,如果在找一个指数形式的解,找出指数是多少,系数是多少,这是线性代数的拿手活。会发现这和矩阵的乘幂完全平行。

解两个微分方程的例子
如下两个关于时间t的微分方程,微分方程为 du/dt=Au,它的系数矩阵A是[-1 2;1 -2],并假设一个初值,假设u(u1, u2)在时间0时,u1(0)=1,但随着时间推移,将有du2/dt > 0,因为u1为正,东西将从u1流出流向u2,随着时间继续追踪它的变化,通过观察矩阵A的特征值和特征向量找到规律。
求特征值和特征向量,因为A是奇异矩阵,一个特征值为0,另一个特征值可由迹得到,即λ1=0, λ2=-3。教授由此预测答案的两部分,一部分为 e -3t,它将随时间增加消失,另一部分为稳态 e -0t=1为常数。求解特征向量得到:
答案如下,这是微分方程的通解,是两个纯指数解的组合。纯指数形式就是这样 e -3 t的纯幂形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值