线性代数导论24——马尔科夫矩阵、傅立叶级数

本文探讨了线性代数中的马尔科夫矩阵及其性质,包括特征值、稳态和概率意义。此外,还介绍了傅立叶级数,通过投影问题阐述其与马尔科夫矩阵的联系,展示了如何在函数空间中进行展开和求解系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第二十四课时:马尔科夫矩阵、傅立叶级数
本讲讲解特征值的应用,马尔科夫矩阵理论,傅里叶级数(它是投影矩阵的巧妙应用)

马尔科夫矩阵
满足 两条性质:1)所有元素大于等于0; 2)所有矩阵的列相加等于1。(这个性质保证了特征值为1,为什么?)
马尔科夫矩阵的幂都是马尔科夫矩阵。马尔科夫矩阵和概率思想有关联,它有如上性质都是与概率有关的。
考虑马尔科夫矩阵的特征值和特征向量。它的稳态,稳态是什么ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值