人脸特征点检测:VanillaCNN

该博客介绍了论文《Facial Landmark Detection with Tweaked Convolutional Neural Networks》中的人脸特征点检测方法Vanilla CNN。论文提出的方法包括去除多任务学习,使用彩色图像和特定的损失函数。网络分析显示,深度学习模型通过层次特征定位来捕获人脸细节。此外,作者还探讨了TCNN,即通过针对不同姿势的粗略和精确回归模型提高定位精度。实验结果显示Vanilla CNN的表现优于TCDCN。博客提供了MXNet实现的代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Facial Landmark Detection with Tweaked Convolutional Neural Networks》论文解读


论文地址:

http://www.openu.ac.il/home/hassner/projects/tcnn_landmarks/

概述

如我前面所说,人脸特征点检测是一个回归问题,这个问题需要关注两个方面:一是人脸特征表示,二是回归方法。这次解析的论文是使用深度学习的方法来做特征点检测,它的方法也不会脱离这个框架的。

Vanilla CNN

其实这篇论文的网络结构和前面的TCDCN网络结构是一样的,就不一一细说了。

TCDCN:
TCDCN

Vanilla CNN:
Vanilla CNN

和TCDCN不一样的地方在于:去掉多任务学习而且使用彩色图像。损失函数也不一样,这里使用的损失函数使用了两眼间距离进行标准化:

L(Pi,P^i)=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值