漫步数学分析六——聚点

翻译 2017年01月03日 20:53:06

除了定义外,还有一种非常有用的方式来判断一个集合是否为闭集,而该方法依赖于一个非常重要的概念:聚点(accumulation point)。

4 对于点xRn,如果包含x的每个开集U包含不同于x但依然属于集合A中的点,那么就称xA的一个聚点。

也就是说,集合A的聚点是这样的点,A中其他点可以任意靠近它,聚点也叫做聚类点(cluster points)。

利用定理1,xA聚类点的定义等价于下面的命题:对于每个ε>0D(x,ε)包含A中的某点yyx

例如R1中,由单点组成的集合没有聚点并且开区间(0,1) 的聚点是[0,1]中的所有点。注意集合的聚点不一定必须在集合中,聚点与闭集的定义有非常紧密的联系,正如下面定理所述。

4 集合ARn是闭集,当且仅当A的所有聚点属于A

注意一个集合也可以没有聚点(例如单点或R1中的整数集),这时候应用定理4依然得出集合是闭集。另一种证明方法会在之后的定理9给出。

定理4在直观上非常清楚,因为集合为闭粗略地说就是它包含其边界上的所有点并且这样的点是聚点。这种粗略的说法很不严格,事实上当集合非常复杂时我们的直觉可能会出错,所以我们必须严格讨论。例如考虑A={1/nR|n=1,2,3,}{0},这是一个闭集且只有一个聚点0位于A中,但是根据上面给出的边界,这个集合不是非常直观,因此我们必须仔细讨论。

1S={xR|x[0,1]x},求S的聚点。

聚点集有[0,1]中的所有点组成。事实上,令y[0,1],D(y,ε)=(yε,y+ε)y的一个邻域,那么我们可以在[0,1]中找出一些有理数,他们任意靠近y且在D(y,ε)中,因此y是聚点,任何y[0,1]的点不是聚点,因为y有一个包含它的ε邻域但与[0,1]不交。

2对于集合A={(x,y)R2|0x1 or x=2},验证定理4。


这里写图片描述
图1

A如图1所示,很明显A是闭集,A 的聚点就是A本身,注意在R上,[0,1]{2}的聚点是[0,1]没有点{2}

3S={(x,y)R2|y<x2+1},求S的聚点。


这里写图片描述
图2

S如图2所示,从图中可以明显看出聚点由集合{(x,y)R2|yx2+1}组成。

空间统计(三)聚类分布制图

这组工具中包含众所周知的热点分析工具,通过这个工具我们能捕获到大量数据中的热点和冷点,对我们分析问题有很大的帮助。例如,在犯罪分析中,我们可以研究哪些位置犯罪频繁并且聚集,对增设警力有重要的辅助作用。...
  • kikitaMoon
  • kikitaMoon
  • 2015年03月17日 15:59
  • 33866

【机器学习理论】第3部分 聚类分析

1、概述聚类分析可以应用到多个领域中,在生物学中,聚类可以辅助动植物分类的研究,可以通过对基因数据的聚类,找出功能相似的基因;在地理信息系统中,聚类可以找出具有相抵用途的区域,辅助石油开采;在商业上,...
  • kevinelstri
  • kevinelstri
  • 2016年12月24日 14:17
  • 1278

漫步微积分六——极限的概念

前面给出的导数定义都依赖于函数极限的概念,我们对极限只做了最简短的解释。现在,我们已经知道了这一概念的目的,接下来关心一下它的意义。考虑函数f(x)f(x),自变量在点aa的领域内都有定义,但是aa ...
  • u010182633
  • u010182633
  • 2016年07月18日 18:37
  • 2395

漫步数学分析二十六——积分方程与不动点

在许多物理问题中,我们会遇到积分方程;他们的形式如下 f(x)=a+∫x0k(x,y)f(y)dy(1)\begin{equation} f(x)=a+\int_0^x k(x,y)f(y)dy\t...
  • u010182633
  • u010182633
  • 2017年03月03日 21:46
  • 216

漫步数学分析二十七——Stone-Weierstrass定理

在讨论连续函数与一致收敛时,最基本的两个结论是上篇文章讨论的Arzela-Ascoli定理以及本文要讨论的斯通-魏尔斯特拉斯(Stone-Weierstrass)定理。斯通-魏尔斯特拉斯定理主要是为了...
  • u010182633
  • u010182633
  • 2017年03月05日 21:04
  • 1777

漫步数学分析三十六——泰勒定理

我们讨论一般函数f:A⊂Rn→Rmf:A\subset R^n\to R^m的泰勒公式,为此我们首先讨论高阶导数。对于f:Rn→Rf:R^n\to R,定义高阶偏导没有问题;我们仅仅迭代偏导的过程 ...
  • u010182633
  • u010182633
  • 2017年03月17日 19:17
  • 388

漫步数学分析八——集合边界

如果我们考虑R2R^2中的单位圆,那么其边界显然就是圆。但是对于更加复杂的情况,例如有理数,它的边界是什么在直观上就不明显,因此我们需要精确的定义。定义6\textbf{定义6} 对于R2R^2中的集...
  • u010182633
  • u010182633
  • 2017年01月06日 16:59
  • 425

漫步数学分析十一——紧集

在给出RnR^n中紧集的精确定义前,我们需要介绍一些术语。对于集合A⊂RnA\subset R^n,当且仅当存在一个常数M≥0M\geq0使得A⊂D(0,M)A\subset D(0,M),那么就称该...
  • u010182633
  • u010182633
  • 2017年01月14日 15:41
  • 517

漫步数学分析十四——连通集

定义3\textbf{定义3} 集合A⊂RnA\subset R^n为连通集,如果不存在两个非空开集U,VU,V,使得A⊂U∪V,A∩U≠∅,A∩V≠∅,A∩U∩V=∅A\subset U\cup V...
  • u010182633
  • u010182633
  • 2017年01月18日 16:58
  • 244

漫步数学分析十三——路径连通

第二个重要的主题是连通性,我们直观上知道想应用连通性到哪种集合上,然而,我们的直观在判断更复杂的集合时可能会失效,例如如果R2R^2中的集合为{(x,sin1/x)|x>0}∪{(0,y)|y∈[−1...
  • u010182633
  • u010182633
  • 2017年01月17日 17:05
  • 155
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步数学分析六——聚点
举报原因:
原因补充:

(最多只允许输入30个字)