漫步数学分析六——聚点

除了定义外,还有一种非常有用的方式来判断一个集合是否为闭集,而该方法依赖于一个非常重要的概念:聚点(accumulation point)。

4 对于点 xRn ,如果包含 x 的每个开集U包含不同于 x 但依然属于集合A中的点,那么就称 x A的一个聚点。

也就是说,集合 A 的聚点是这样的点,A中其他点可以任意靠近它,聚点也叫做聚类点(cluster points)。

利用定理1, x A聚类点的定义等价于下面的命题:对于每个 ε>0 D(x,ε) 包含 A 中的某点y yx

例如 R1 中,由单点组成的集合没有聚点并且开区间 (0,1) 的聚点是 [0,1] 中的所有点。注意集合的聚点不一定必须在集合中,聚点与闭集的定义有非常紧密的联系,正如下面定理所述。

4 集合 ARn 是闭集,当且仅当 A 的所有聚点属于A

注意一个集合也可以没有聚点(例如单点或 R1 中的整数集),这时候应用定理4依然得出集合是闭集。另一种证明方法会在之后的定理9给出。

定理4在直观上非常清楚,因为集合为闭粗略地说就是它包含其边界上的所有点并且这样的点是聚点。这种粗略的说法很不严格,事实上当集合非常复杂时我们的直觉可能会出错,所以我们必须严格讨论。例如考虑 A={1/nR|n=1,2,3,}{0} ,这是一个闭集且只有一个聚点 0 位于 A 中,但是根据上面给出的边界,这个集合不是非常直观,因此我们必须仔细讨论。

1 S={xR|x[0,1]x} ,求 S 的聚点。

聚点集有[0,1]中的所有点组成。事实上,令 y[0,1],D(y,ε)=(yε,y+ε) y 的一个邻域,那么我们可以在[0,1]中找出一些有理数,他们任意靠近y且在 D(y,ε) 中,因此 y 是聚点,任何y[0,1]的点不是聚点,因为 y 有一个包含它的ε邻域但与[0,1]不交。

2 对于集合 A={(x,y)R2|0x1 or x=2} ,验证定理4。


这里写图片描述
图1

A 如图1所示,很明显A是闭集, A 的聚点就是A本身,注意在 R 上,[0,1]{2}的聚点是 [0,1] 没有点 {2}

3 S={(x,y)R2|y<x2+1} ,求 S 的聚点。


这里写图片描述
图2

S 如图2所示,从图中可以明显看出聚点由集合{(x,y)R2|yx2+1}组成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值