关闭

漫步数学分析六——聚点

标签: 聚点
323人阅读 评论(0) 收藏 举报
分类:

除了定义外,还有一种非常有用的方式来判断一个集合是否为闭集,而该方法依赖于一个非常重要的概念:聚点(accumulation point)。

4 对于点xRn,如果包含x的每个开集U包含不同于x但依然属于集合A中的点,那么就称xA的一个聚点。

也就是说,集合A的聚点是这样的点,A中其他点可以任意靠近它,聚点也叫做聚类点(cluster points)。

利用定理1,xA聚类点的定义等价于下面的命题:对于每个ε>0D(x,ε)包含A中的某点yyx

例如R1中,由单点组成的集合没有聚点并且开区间(0,1) 的聚点是[0,1]中的所有点。注意集合的聚点不一定必须在集合中,聚点与闭集的定义有非常紧密的联系,正如下面定理所述。

4 集合ARn是闭集,当且仅当A的所有聚点属于A

注意一个集合也可以没有聚点(例如单点或R1中的整数集),这时候应用定理4依然得出集合是闭集。另一种证明方法会在之后的定理9给出。

定理4在直观上非常清楚,因为集合为闭粗略地说就是它包含其边界上的所有点并且这样的点是聚点。这种粗略的说法很不严格,事实上当集合非常复杂时我们的直觉可能会出错,所以我们必须严格讨论。例如考虑A={1/nR|n=1,2,3,}{0},这是一个闭集且只有一个聚点0位于A中,但是根据上面给出的边界,这个集合不是非常直观,因此我们必须仔细讨论。

1S={xR|x[0,1]x},求S的聚点。

聚点集有[0,1]中的所有点组成。事实上,令y[0,1],D(y,ε)=(yε,y+ε)y的一个邻域,那么我们可以在[0,1]中找出一些有理数,他们任意靠近y且在D(y,ε)中,因此y是聚点,任何y[0,1]的点不是聚点,因为y有一个包含它的ε邻域但与[0,1]不交。

2对于集合A={(x,y)R2|0x1 or x=2},验证定理4。


这里写图片描述
图1

A如图1所示,很明显A是闭集,A 的聚点就是A本身,注意在R上,[0,1]{2}的聚点是[0,1]没有点{2}

3S={(x,y)R2|y<x2+1},求S的聚点。


这里写图片描述
图2

S如图2所示,从图中可以明显看出聚点由集合{(x,y)R2|yx2+1}组成。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:131342次
    • 积分:3614
    • 等级:
    • 排名:第9385名
    • 原创:12篇
    • 转载:0篇
    • 译文:226篇
    • 评论:77条
    最新评论