3. 矩阵的几何解释

本文探讨了矩阵在几何中的意义,指出矩阵的行作为基向量可以表示坐标系的转换。通过矩阵乘法,向量在不同坐标系间的变换得以实现,包括旋转、缩放等效果。矩阵M将原坐标系下的向量a转换为新坐标系下的向量b,保持了相对位置的关系。总结来说,矩阵是描述坐标变换的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先通过向量来理解矩阵。向量[1, -3, 4]可以解释成如下的向量的加法

任意向量v都可以写成如下扩展形式

进一步写成:

右侧的单位就是x, y, z轴,记为nx, ny, nz。我们可以将其写成:

v=x*nx+y*ny+z*nz

 

如果我们用向量p,g,r重写nx, ny, nz意义不变:

v=xp+yg+zr

这里p,g,r就称为基向量,在这里它们是笛卡尔坐标轴。事实上,一个坐标系能用任意三个线性无关的向量作基向量来定义,[x,y,z]是向量v在以p,g,r为基向量的坐标系中的表示。以p,g,r为行定义一个3*3矩阵M,得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值