矩阵理论| 特殊矩阵:酉矩阵、旋转与镜射

酉矩阵Unitary matrix

复数域的“正交矩阵”就是酉矩阵。酉矩阵的列向量组为一组标准正交基,因而
酉矩阵 U U U满足 U H U = U U H = I U^HU=UU^H=I UHU=UUH=I

酉矩阵出现于许多分解中:
SVD( A = U Σ V H A=U\Sigma V^H A=UΣVH)、矩阵三角化的 Schur 定理( A = A = U T U H A= A=UTU^H A=A=UTUH T T T为上三角阵)、正规矩阵的酉对角化( A = U Λ U H A=U\Lambda U^H A=UΛUH

酉矩阵的几何意义:旋转与镜射

一般而言,我们简单认为酉矩阵对应旋转变换;
但是实际上,旋转这个说法不是非常准确,前提是正交矩阵 Q Q Q的行向量必须适当排序 ,否则也可能包含镜像变换

酉矩阵的几何意义有两种:旋转 和 镜射

例如2维空间中的两个正交矩阵是:
Q 1 = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] Q_{1}=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] Q1=[cosθsinθsinθcosθ] Q 2 = [ − sin ⁡ θ cos ⁡ θ cos ⁡ θ sin ⁡ θ ] Q_{2}=\left[\begin{array}{cc} -\sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{array}\right] Q2=[sinθcosθcosθsinθ]

其中, Q 1 Q_1 Q1对应旋转变换,而 Q 2 = Q 1 [ 0 1 1 0 ] Q_{2}=Q_{1}\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] Q2=Q1[0110]则是旋转变换+镜像变换(将x/y轴对调,相当于关于直线y=x的镜像反射)

详见 旋转与镜射

酉矩阵的性质

酉变换几何意义是旋转,由此立即可知:

  • 酉变换保证长度不变: ∥ U x ∥ = ∥ x ∥ \Vert U\mathbf{x}\Vert=\Vert\mathbf{x}\Vert Ux=x
    酉变换保证向量夹角不变: ( U x ) H ( U y ) = x H y (U\mathbf{x})^H(U\mathbf{y})=\mathbf{x}^H\mathbf{y} (Ux)H(Uy)=xHy
  • 酉矩阵特征值的模为1,即 ∣ λ ∣ = 1 |\lambda|=1 λ=1
    证明: ∥ λ x ∥ = ∥ U x ∥ = ∥ x ∥ \Vert \lambda\mathbf{x}\Vert=\Vert U\mathbf{x}\Vert=\Vert\mathbf{x}\Vert λx=Ux=x,即 ∣ λ ∣ ∥ x ∥ = ∥ x ∥ |\lambda|\Vert \mathbf{x}\Vert=\Vert \mathbf{x}\Vert λ∣∥x=x

特征值与行列式:

  • 酉矩阵行列式的模为1,即 ∣ det ⁡ U ∣ = 1 \vert\det U\vert=1 detU=1
    证明: ∣ det ⁡ U ∣ = ∣ λ 1 ⋯ λ n ∣ = ∣ λ 1 ∣ ⋯ ∣ λ n ∣ = 1 \vert\det U\vert=\vert \lambda_1\cdots\lambda_n\vert=\vert\lambda_1\vert\cdots\vert\lambda_n\vert=1 detU=λ1λn=λ1λn=1
  • 进一步,对于实正交矩阵 Q Q Q det ⁡ Q = ± 1 \det Q=\pm 1 detQ=±1
    det ⁡ Q = 1 \det Q=1 detQ=1称为适当的(proper) 的正交矩阵; det ⁡ Q = − 1 \det Q=-1 detQ=1称为不适当的正交矩阵

例如下面两种实正交矩阵:
逆时针旋转 θ \theta θ角度的旋转矩阵 R ( θ ) = [  ⁣ ⁣ sin ⁡ θ − cos ⁡ θ cos ⁡ θ sin ⁡ θ  ⁣ ⁣ ] R(\theta)=\left[\!\!\begin{array}{cr} \sin\theta&-\cos\theta\\ \cos\theta&\sin\theta \end{array}\!\!\right] R(θ)=[sinθcosθcosθsinθ]满足 det ⁡ R ( θ ) = 1 \det R(\theta)=1 detR(θ)=1,这是适当的正交矩阵
平面上以 [ cos ⁡ ϕ sin ⁡ ϕ ] \begin{bmatrix} \cos\phi\\ \sin\phi \end{bmatrix} [cosϕsinϕ] 为镜射轴的镜射矩阵 F ( ϕ ) = [  ⁣ ⁣ cos ⁡ 2 ϕ   s i n 2 ϕ sin ⁡ 2 ϕ − cos ⁡ 2 ϕ  ⁣ ⁣ ] F(\phi)=\left[\!\!\begin{array}{cr} \cos 2\phi&\ sin 2\phi\\ \sin 2\phi&-\cos 2\phi \end{array}\!\!\right] F(ϕ)=[cos2ϕsin2ϕ sin2ϕcos2ϕ]满足 det ⁡ F ( θ ) = − 1 \det F(\theta)=-1 detF(θ)=1,这是不适当的正交矩阵
详见 旋转与镜射

  • 最后,酉矩阵(属于正规矩阵)可以酉对角化 U = V D V H U=VDV^H U=VDVH(一套正交的特征向量)

酉矩阵的判别

A A A是酉矩阵的充要条件:

  • 所有特征值满足 ∣ λ ∣ = 1 \vert\lambda\vert=1 λ=1,且最大奇异值 σ max ⁡ ≤ 1 \sigma_{\max}\le 1 σmax1
    σ max ⁡ ≤ 1 \sigma_{\max}\le 1 σmax1的等价表述:① A A A的算子2范数 ∥ A ∥ 2 = max ⁡ ∥ x ∥ ≠ 0 ∥ A x ∥ ∥ x ∥ = σ max ⁡ ≤ 1 \displaystyle \Vert A\Vert_2=\max_{\Vert\mathbf{x}\Vert\neq\mathbf{0}}\frac{\Vert A\mathbf{x}\Vert}{\Vert\mathbf{x}\Vert}=\sigma_{\max}\le 1 A2=x=0maxxAx=σmax1;②对于任意向量 x \mathbf{x} x ∥ A x ∥ ≤ ∥ x ∥ \Vert A\mathbf{x}\Vert\le\Vert\mathbf{x}\Vert Axx

证明:
A A A的SVD为 A = U Σ V H A=U\Sigma V^H A=UΣVH,则 det ⁡ ( A H A ) = det ⁡ ( Σ H Σ ) = σ 1 2 ⋯ σ n 2 \det(A^H A)=\det(\Sigma^H\Sigma)=\sigma_1^2\cdots\sigma_n^2 det(AHA)=det(ΣHΣ)=σ12σn2
又因为有恒等式 det ⁡ ( A H A ) = ∣ det ⁡ A ∣ 2 \det(A^H A)=\vert\det A\vert^2 det(AHA)=detA2(原因: det ⁡ ( A H A ) = ( det ⁡ A T ‾ ) ( det ⁡ A ) = ( det ⁡ A T ‾ ) ( det ⁡ A ) = ( det ⁡ A ‾ ) ( det ⁡ A ) = ∣ det ⁡ A ∣ 2 \det(A^HA)=(\det \overline{A^T})(\det A)=(\overline{\det A^T})(\det A)=(\overline{\det A})(\det A)=\vert\det A\vert^2 det(AHA)=(detAT)(detA)=(detAT)(detA)=(detA)(detA)=detA2
det ⁡ ( A H A ) = σ 1 2 ⋯ σ n 2 = ∣ det ⁡ A ∣ 2 = ∣ λ 1 ⋯ λ n ∣ 2 \det(A^H A)=\sigma_1^2\cdots\sigma_n^2=\vert\det A\vert^2=|\lambda_1\cdots\lambda_n|^2 det(AHA)=σ12σn2=detA2=λ1λn2
σ 1 ⋯ σ n = ∣ λ 1 ⋯ λ n ∣ = ∣ λ 1 ∣ ⋯ ∣ λ n ∣ = 1 \sigma_1\cdots\sigma_n=\vert \lambda_1\cdots\lambda_n\vert=\vert\lambda_1\vert\cdots\vert\lambda_n\vert=1 σ1σn=λ1λn=λ1λn=1,又因为 σ max ⁡ ≤ 1 \sigma_{\max}\le 1 σmax1,可知 σ 1 = ⋯ = σ n = 1 \sigma_1=\cdots=\sigma_n=1 σ1==σn=1
最终 A = U Σ V H = U I V H = U V H A=U\Sigma V^H=UIV^H=UV^H A=UΣVH=UIVH=UVH,即知 A H A = I A^HA=I AHA=I A A A 是酉矩阵

reference:
特殊矩阵 (3):么正矩阵 (酉矩阵)
旋转与镜射

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值