深度学习基础2(反向传播算法)

转载 2015年11月19日 09:32:04

反向传播算法


我们先是用链式法则解释。比如如下的神经网络
  • 前向传播
对于节点h_1来说,h_1的净输入net_{h_1}如下:
net_{h_1}=w_1\times i_1+w_2\times i_2+b_1\times 1
接着对net_{h_1}做一个sigmoid函数得到节点h_1的输出:
out_{h_1}=\frac{1}{1+e^{-net_{h_1}}}
类似的,我们能得到节点h_2o_1o_2的输出out_{h_2}out_{o_1}out_{o_2}

  • 误差
得到结果后,整个神经网络的输出误差可以表示为:
E_{total}=\sum\frac{1}{2}(target-output)^2
其中output就是刚刚通过前向传播算出来的out_{o_1}out_{o_2}target是节点o_1o_2的目标值。E_{total}用来衡量二者的误差。
这个E_{total}也可以认为是cost function,不过这里省略了防止overfit的regularization term(\sum{w_i^2}
展开得到
E_{total}=E{o_1}+E{o_2}=\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2

  • 后向传播
对输出层的w_5
通过梯度下降调整w_5,需要求\frac{\partial {E_{total}}}{\partial {w_5}},由链式法则:
\frac{\partial {E_{total}}}{\partial {w_5}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}\frac{\partial {net_{o_1}}}{\partial {w_5}}
如下图所示:
<img src="https://pic4.zhimg.com/50/f2d8768af0d9264687905a0134dae927_hd.png" data-rawwidth="525" data-rawheight="257" class="origin_image zh-lightbox-thumb" width="525" data-original="https://pic4.zhimg.com/f2d8768af0d9264687905a0134dae927_r.png">\frac{\partial {E_{total}}}{\partial {out_{o_1}}}=\frac{\partial}{\partial {out_{o_1}}}(\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2)=-(target_{o_1}-out_{o_1})
\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}=\frac{\partial }{\partial {net_{o_1}}}\frac{1}{1+e^{-net_{o_1}}}=out_{o_1}(1-out_{o_1})
\frac{\partial {net_{o_1}}}{\partial {w_5}}=\frac{\partial}{\partial {w_5}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=out_{h_1}
以上3个相乘得到梯度\frac{\partial {E_{total}}}{\partial {w_5}},之后就可以用这个梯度训练了:
w_5^+=w_5-\eta \frac{\partial {E_{total}}}{\partial {w_5}}
很多教材比如Stanford的课程,会把中间结果\frac{\partial {E_{total}}}{\partial {net_{o_1}}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}记做\delta_{o_1},表示这个节点对最终的误差需要负多少责任。。所以有\frac{\partial {E_{total}}}{\partial {w_5}}=\delta_{o_1}out_{h_1}



对隐藏层的  w_1
通过梯度下降调整w_1,需要求\frac{\partial {E_{total}}}{\partial {w_1}},由链式法则:
\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}}
如下图所示:
<img src="https://pic3.zhimg.com/50/d50d1d812f0f036b8c5cb389e463b01a_hd.png" data-rawwidth="612" data-rawheight="494" class="origin_image zh-lightbox-thumb" width="612" data-original="https://pic3.zhimg.com/d50d1d812f0f036b8c5cb389e463b01a_r.png">参数参数w_1影响了net_{h_1},进而影响了out_{h_1},之后又影响到E_{o_1}E_{o_2}
求解每个部分:
\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}+\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}}
其中\frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {net_{o_1}}}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial}{\partial {out_{h_1}}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=\delta_{o_1}w_5,这里\delta_{o_1}之前计算过。
\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}}的计算也类似,所以得到
\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\delta_{o_1}w_5+\delta_{o_2}w_7
\frac{\partial {E_{total}}}{\partial {w_1}}的链式中其他两项如下:
\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=out_{h_1}(1-out_{h_1})
\frac{\partial {net_{h_1}}}{\partial {w_1}}=\frac{\partial }{\partial {w_1}}(w_1\times i_1+w_2\times i_2+b_1\times 1)=i_1
相乘得到
\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) \times i_1
得到梯度后,就可以对w_1迭代了:
w_1^+=w_1-\eta \frac{\partial{E_{total}}}{\partial{w_1}}
在前一个式子里同样可以对\delta_{h_1}进行定义,\delta_{h_1}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) =(\sum_o \delta_ow_{ho})\times out_{h_1}(1-out_{h_1}) ,所以整个梯度可以写成\frac{\partial {E_{total}}}{\partial {w_1}}=\delta_{h_1}\times i_1

=======================
上述\delta就是教程Unsupervised Feature Learning and Deep Learning Tutorial 中第三步计算的由来。。
<img src="https://pic3.zhimg.com/50/2d29c11b1c9da7652c63f01d5e31284e_hd.jpg" data-rawwidth="822" data-rawheight="428" class="origin_image zh-lightbox-thumb" width="822" data-original="https://pic3.zhimg.com/2d29c11b1c9da7652c63f01d5e31284e_r.jpg">

所谓的后向传播,其实就是『将来在宣传传播上出了偏差,你们要负责的!』,每一个节点负责的量用\delta表示,那么,隐藏节点需要负责的量,就由输出节点负责的量一层层往前传导。

参考:
【1】A Step by Step Backpropagation Example
【2】Unsupervised Feature Learning and Deep Learning Tutorial


假设我们有一个固定样本集 \textstyle \{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \},它包含 \textstyle m 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 \textstyle (x,y),其代价函数为:

\begin{align}J(W,b; x,y) = \frac{1}{2} \left\| h_{W,b}(x) - y \right\|^2.\end{align}

这是一个(二分之一的)方差代价函数。给定一个包含 \textstyle m 个样例的数据集,我们可以定义整体代价函数为:

 \begin{align}J(W,b)&= \left[ \frac{1}{m} \sum_{i=1}^m J(W,b;x^{(i)},y^{(i)}) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2 \\&= \left[ \frac{1}{m} \sum_{i=1}^m \left( \frac{1}{2} \left\| h_{W,b}(x^{(i)}) - y^{(i)} \right\|^2 \right) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2\end{align}

以上公式中的第一项 \textstyle J(W,b) 是一个均方差项。第二项是一个规则化项(也叫权重衰减项,其目的是减小权重的幅度,防止过度拟合。


[注:通常权重衰减的计算并不使用偏置项 \textstyle b^{(l)}_i,比如我们在 \textstyle J(W, b) 的定义中就没有使用。一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响。如果你在斯坦福选修过CS229(机器学习)课程,或者在YouTube上看过课程视频,你会发现这个权重衰减实际上是课上提到的贝叶斯规则化方法的变种。在贝叶斯规则化方法中,我们将高斯先验概率引入到参数中计算MAP(极大后验)估计(而不是极大似然估计)。]


权重衰减参数 \textstyle \lambda 用于控制公式中两项的相对重要性。在此重申一下这两个复杂函数的含义:\textstyle J(W,b;x,y) 是针对单个样例计算得到的方差代价函数;\textstyle J(W,b) 是整体样本代价函数,它包含权重衰减项。


以上的代价函数经常被用于分类和回归问题。在分类问题中,我们用 \textstyle y = 0 或 \textstyle 1,来代表两种类型的标签(回想一下,这是因为 sigmoid激活函数的值域为 \textstyle [0,1];如果我们使用双曲正切型激活函数,那么应该选用 \textstyle -1 和 \textstyle +1 作为标签)。对于回归问题,我们首先要变换输出值域(译者注:也就是 \textstyle y),以保证其范围为 \textstyle [0,1] (同样地,如果我们使用双曲正切型激活函数,要使输出值域为 \textstyle [-1,1])。


我们的目标是针对参数 \textstyle W 和 \textstyle b 来求其函数 \textstyle J(W,b) 的最小值。为了求解神经网络,我们需要将每一个参数 \textstyle W^{(l)}_{ij} 和 \textstyle b^{(l)}_i 初始化为一个很小的、接近零的随机值(比如说,使用正态分布 \textstyle {Normal}(0,\epsilon^2) 生成的随机值,其中 \textstyle \epsilon 设置为 \textstyle 0.01,之后对目标函数使用诸如批量梯度下降法的最优化算法。因为 \textstyle J(W, b) 是一个非凸函数,梯度下降法很可能会收敛到局部最优解;但是在实际应用中,梯度下降法通常能得到令人满意的结果。最后,需要再次强调的是,要将参数进行随机初始化,而不是全部置为 \textstyle 0。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,对于所有 \textstyle i\textstyle W^{(1)}_{ij}都会取相同的值,那么对于任何输入 \textstyle x 都会有:\textstyle a^{(2)}_1 = a^{(2)}_2 = a^{(2)}_3 = \ldots )。随机初始化的目的是使对称失效


梯度下降法中每一次迭代都按照如下公式对参数 \textstyle W 和\textstyle b 进行更新:

\begin{align}W_{ij}^{(l)} &= W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) \\b_{i}^{(l)} &= b_{i}^{(l)} - \alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W,b)\end{align}

其中 \textstyle \alpha 是学习速率。其中关键步骤是计算偏导数。我们现在来讲一下反向传播算法,它是计算偏导数的一种有效方法


我们首先来讲一下如何使用反向传播算法来计算 \textstyle \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x, y) 和 \textstyle \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x, y),这两项是单个样例 \textstyle (x,y) 的代价函数 \textstyle J(W,b;x,y) 的偏导数。一旦我们求出该偏导数,就可以推导出整体代价函数 \textstyle J(W,b) 的偏导数:


\begin{align}\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) &=\left[ \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)} \\\frac{\partial}{\partial b_{i}^{(l)}} J(W,b) &=\frac{1}{m}\sum_{i=1}^m \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x^{(i)}, y^{(i)})\end{align}

以上两行公式稍有不同,第一行比第二行多出一项,是因为权重衰减是作用于 \textstyle W 而不是 \textstyle b


反向传播算法的思路如下:给定一个样例 \textstyle (x,y),我们首先进行“前向传导”运算,计算出网络中所有的激活值,包括 \textstyle h_{W,b}(x) 的输出值。之后,针对第 \textstyle l层的每一个节点 \textstyle i,我们计算出其“残差” \textstyle \delta^{(l)}_i,该残差表明了该节点对最终输出值的残差产生了多少影响。对于最终的输出节点,我们可以直接算出网络产生的激活值与实际值之间的差距,我们将这个差距定义为 \textstyle \delta^{(n_l)}_i (第 \textstyle n_l 层表示输出层)。对于隐藏单元我们如何处理呢?我们将基于节点(译者注:第 \textstyle l+1层节点)残差的加权平均值计算 \textstyle \delta^{(l)}_i,这些节点以 \textstyle a^{(l)}_i 作为输入。

具体BP算法的数学推导请参照机器学习《BP算法详谈》。


中英文对照

反向传播算法 Backpropagation Algorithm
(批量)梯度下降法 (batch) gradient descent
(整体)代价函数 (overall) cost function
方差 squared-error
均方差 average sum-of-squares error
规则化项 regularization term
权重衰减 weight decay
偏置项 bias terms
贝叶斯规则化方法 Bayesian regularization method
高斯先验概率 Gaussian prior
极大后验估计 MAP
极大似然估计 maximum likelihood estimation
激活函数 activation function
双曲正切函数 tanh function
非凸函数 non-convex function
隐藏层单元 hidden (layer) units
对称失效 symmetry breaking
学习速率 learning rate
前向传导 forward pass
假设值 hypothesis
残差 error term
加权平均值 weighted average
前馈传导 feedforward pass
阿达马乘积 Hadamard product
前向传播 forward propagation

相关文章推荐

深度学习与计算机视觉系列(5)_反向传播与它的直观理解

其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的...

深度学习笔记2:反向传播算法

1、损失函数         损失函数在统计学中是一种衡量损失和误差程度的函数,它一般包括损失项(loss term)和正则项(regularization term)。     损失项     ...

Deep Learning(深度学习)之(五)神经网络训练中的高效BP(反向传播算法)

人工神经网络的能力大家都是有目共睹的,在机器学习领域可是占据了一定的地位。这点应该毋庸置疑。它可以建模任意复杂的函数。虽然能力大了有时候也不是好事,因为容易过拟合。但能力小了,就没办法建模复杂的函数,...

对反向传播算法(Back-Propagation)的推导与一点理解

最近在对卷积神经网络(CNN)进行学习的过程中,发现自己之前对反向传播算法的理解不够透彻,所以今天专门写篇博客记录一下反向传播算法的推导过程,算是一份备忘录吧,有需要的朋友也可以看一下这篇文章,写的挺...
  • qrlhl
  • qrlhl
  • 2016年03月14日 13:35
  • 9787

反向传播算法

原文:http://www.zhihu.com/question/27239198/answer/89853077 BackPropagation算法是多层神经网络的训练中举足轻重的算法。 简单的理解...

中国计算机学会(CCF)——推荐国际学术会议和期刊目录

http://www.ccf.org.cn/sites/ccf/paiming.jsp 中国计算机学会推荐国际学术期刊 (软件工程/系统软件/程序设计语言)...
  • ztguang
  • ztguang
  • 2016年04月08日 15:54
  • 518

深度学习中常用的调节参数

一、深度学习中常用的调节参数 原文链接:http://www.cnblogs.com/maohai/p/6453417.html 1、学习率 步长的选择:你走的距离长短,越短当然不会...
  • d5224
  • d5224
  • 2017年05月25日 16:23
  • 1118

深度学习基础知识(2)反向传播算法

版权声明:本文系转载,已获得作者授权 原文网址:http://blog.csdn.net/l691899397/article/details/52223998 作者:佳寧 1、损失函数   损...

零基础入门深度学习(3) - 神经网络和反向传播算法

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o...
  • funao
  • funao
  • 2017年04月24日 20:01
  • 264

神经网络与深度学习笔记(三)python 实现反向传播算法

1、BP方程式2、计算步骤3、代码def backprop(self, x, y): """Return a tuple "(nabla_b, nabla_w)" representing the g...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习基础2(反向传播算法)
举报原因:
原因补充:

(最多只允许输入30个字)