视觉项目中评估图像质量的关键指标

  在图像项目中需要明确的问题是,现有的成像组件拍摄所得的图像质量是否可行?这个问题是整个图像处理项目的基石,因为它对后续图像处理算法和结果的输出有影响。如果仅在主观上进行评断,一方面,人眼并不能特别好的识别出细微的偏差,另一方面,主观上在单一维度(清晰度)上判断图像偏差得出的结果实际上意义不大。
  因此,1、需要对图像质量有所量化的基准。比如,用精度来替换清晰度。2、需要在多个维度来进行量化。其主要包括畸变参数和非畸变参数。其中畸变参数是相机的外参数和内参数,主要用来控制图像畸变。非畸变参数是指图像的像素精度、目标和背景的对比度、图像的稳定性。

1畸变参数

  畸变参数是指那些能够导致图像出现畸变的参数,主要是外参数和内参数。外参数是相机相对于物品的位置参数,也称之为位姿态,这些参数会影响成像的结果。以面针阵相机为例,如果相机的感光面和物品不在同一个平面,则图像会出现投影变形,也就是说成像是物品在成像面上的投影。因此,需要求取相机的位置参数从而来判断目前的投影变换有多大。令人可喜的是,Halcon中有矫正的模块和例程,通过输入相关的参数就能计算出位姿参数。

2非畸变参数

(1)像素精度

  像素精度是指每个像素所对应的实际物理大小。通过像素数除以视野可得像素精度。像素精度越高,拍摄的物体放大的倍数越大,也越清晰。

像素精度= 像素数/视野。
(2)对比度

  对比度指的是目标和背景之间的差异,其差异越大,目标越明显。通过图像的直方图能够量化图像的对比度,图像的直方图呈现明显的双峰性,说明图像的对比度较好。

(3)色彩还原度

  如果是黑白相机,则不需要考虑色彩还原度的问题,而且黑白相机的成像更锐利(因为彩色相机的像素值是一个差值平均的结果,而黑白相机的像素值是无需差值的原始值),因此,如果在黑白相机能满足应用场景的情况下,我建议使用黑白相机。但是,如果使用彩色相机,则一定要评估其色彩还原度。因为,一方面,色彩还原度高能够便于按照人眼的思路来解决问题。另一方面,提供给客户的图像能够让客户更好的理解。

(4)稳定性

  稳定性是来评估整个光学系统和结构是否稳定的指标。如果说,由于位置或者光学系统的不稳定导致图像上灰度值存在差异,那么,就很难在此基础上开发出稳健的光学系统了。通过GRR实验来判断位置偏差和亮度偏差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值