经典算法研究系列:五、红黑树算法的实现与剖析

                     红黑树算法的层层剖析与逐步实现

 

----

作者 July  二零一零年十二月三十一日

本文主要参考:算法导论第二版
本文主要代码:参考算法导论。
本文图片来源:个人手工画成、算法导论原书。
推荐阅读:Leo J. Guibas 和 Robert Sedgewick 于1978年写的关于红黑树的一篇论文。
--------------------------------------------------------------

1、教你透彻了解红黑树
2、红黑树算法的实现与剖析
3、红黑树的c源码实现与剖析
4、一步一图一代码,R-B Tree
5、红黑树插入和删除结点的全程演示
6、红黑树的c++完整实现源码

---------------------------------------------------------------

 

引言: 

昨天下午画红黑树画了好几个钟头,总共10页纸。
特此,再深入剖析红黑树的算法实现,教你如何彻底实现红黑树算法。

经过我上一篇博文,“教你透彻了解红黑树”后,相信大家对红黑树已经有了一定的了解。
个人觉得,这个红黑树,还是比较容易懂的。
不论是插入、还是删除,不论是左旋还是右旋,最终的目的只有一个:
即保持红黑树的5个性质,不得违背。

再次,重述下红黑树的五个性质:
一般的,红黑树,满足一下性质,即只有满足一下性质的树,我们才称之为红黑树:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。


抓住了红黑树的那5个性质,事情就好办多了。
如,
1.红黑红黑,要么是红,要么是黑;
2.根结点是黑;
3.每个叶结点是黑;
4.一个红结点,它的俩个儿子必然都是黑的;
5.每一条路径上,黑结点的数目等同。
   五条性质,合起来,来句顺口溜就是:(1)红黑 (2)黑 (3)黑 (4&5)红->黑 黑。

 

本文所有的文字,都是参照我昨下午画的十张纸(即我拍的照片)与算法导论来写的。

希望,你依照此文一点一点的往下看,看懂此文后,你对红黑树的算法了解程度,一定大增不少。

 

ok,现在咱们来具体深入剖析红黑树的算法,并教你逐步实现此算法。

此教程分为10个部分,每一个部分作为一个小节。且各小节与我给的十张照片一一对应。

 

一、左旋与右旋

     先明确一点:为什么要左旋?

因为红黑树插入或删除结点后,树的结构发生了变化,从而可能会破坏红黑树的性质。

为了维持插入、或删除结点后的树,仍然是一颗红黑树,所以有必要对树的结构做部分调整,从而恢复红黑树的原本性质。

而为了恢复红黑性质而作的动作包括:

结点颜色的改变(重新着色),和结点的调整。

这部分结点调整工作,改变指针结构,即是通过左旋或右旋而达到目的

从而使插入、或删除结点的树重新成为一颗新的红黑树。

 

ok,请看下图:

如上图所示,‘找茬’

如果你看懂了上述俩幅图有什么区别时,你就知道什么是“左旋”,“右旋”。

 

在此,着重分析左旋算法:

左旋,如图所示(左->右),以x->y之间的链为“支轴”进行,

使y成为该新子树的根,x成为y的左孩子,而y的左孩子则成为x的右孩子。

算法很简单,还有注意一点,各个结点从左往右,不论是左旋前还是左旋后,结点大小都是从小到大。

 

左旋代码实现,分三步(注意我给的注释):

The pseudocode for LEFT-ROTATE assumes that right[x] ≠ nil[T] and that the root's parent is nil[T].

LEFT-ROTATE(T, x)
 1  y ← right[x]            ▹ Set y.
 2  right[x] ← left[y]                   //开始变化,y的左孩子成为x的右孩子

 3  if left[y]  !=nil[T]

 4  then p[left[y]] <- x                

 5  p[y] <- p[x]                       //y成为x的父结点
 6  if p[x] = nil[T]

 7     then root[T] <- y

 8     else if x = left[p[x]]
 9             then left[p[x]] ← y
10             else right[p[x]] ← y
11  left[y] ← x             //x成为y的左孩子(一月三日修正

12  p[x] ← y
//注,此段左旋代码,原书第一版英文版与第二版中文版,有所出入。

//个人觉得,第二版更精准。所以,此段代码以第二版中文版为准。

 

左旋、右旋都是对称的,且都是在O(1)时间内完成。因为旋转时只有指针被改变,而结点中的所有域都保持不变。

最后,贴出昨下午关于此左旋算法所画的图:

左旋(第2张图):

//此图有点bug。第4行的注释移到第11行。如上述代码所示。(一月三日修正)

 

二、左旋的一个实例

不做过多介绍,看下副图,一目了然。

LEFT-ROTATE(T, x)的操作过程(第3张图):

 

--------------------- 

提醒,看下文之前,请首先务必明确,区别以下俩种操作:

1.红黑树插入、删除结点的操作

         //如插入中,红黑树插入结点操作:RB-INSERT(T, z)。

2.红黑树已经插入、删除结点之后,

为了保持红黑树原有的红黑性质而做的恢复与保持红黑性质的操作。

        //如插入中,为了恢复和保持原有红黑性质,所做的工作:RB-INSERT-FIXUP(T, z)。

ok,请继续。

 

三、红黑树的插入算法实现

RB-INSERT(T, z)   //注意我给的注释...
 1  y ← nil[T]                 // y 始终指向 x 的父结点。
 2  x ← root[T]              // x 指向当前树的根结点,
 3  while x ≠ nil[T]
 4      do y ← x
 5         if key[z] < key[x]           //向左,向右..
 6            then x ← left[x]
 7            else x ← right[x]         // 为了找到合适的插入点,x 探路跟踪路径,直到x成为NIL 为止。
 8  p[z] ← y         // y置为 插入结点z 的父结点。
 9  if y = nil[T]
10     then root[T] ← z
11     else if key[z] < key[y]
12             then left[y] ← z
13             else right[y] ← z     //此 8-13行,置z 相关的指针。
14  left[z] ← nil[T]
15  right[z] ← nil[T]            //设为空,
16  color[z] ← RED             //将新插入的结点z作为红色
17  RB-INSERT-FIXUP(T, z)   //因为将z着为红色,可能会违反某一红黑性质,

                                            //所以需要调用RB-INSERT-FIXUP(T, z)来保持红黑性质。

17 行的RB-INSERT-FIXUP(T, z) ,在下文会得到着重而具体的分析。

还记得,我开头说的那句话么,

是的,时刻记住,不论是左旋还是右旋,不论是插入、还是删除,都要记得恢复和保持红黑树的5个性质。

 

四、调用RB-INSERT-FIXUP(T, z)来保持和恢复红黑性质

RB-INSERT-FIXUP(T, z)
 1 while color[p[z]] = RED
 2     do if p[z] = left[p[p[z]]]
 3           then y ← right[p[p[z]]]
 4                if color[y] = RED
 5                   then color[p[z]] ← BLACK                    ▹ Case 1
 6                        color[y] ← BLACK                       ▹ Case 1
 7                        color[p[p[z]]] ← RED                   ▹ Case 1
 8                        z ← p[p[z]]                            ▹ Case 1
 9                   else if z = right[p[z]]
10                           then z ← p[z]                       ▹ Case 2
11                                LEFT-ROTATE(T, z)              ▹ Case 2
12                           color[p[z]] ← BLACK                 ▹ Case 3
13                           color[p[p[z]]] ← RED                ▹ Case 3
14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3
15           else (same as then clause
                         with "right" and "left" exchanged)
16 color[root[T]] ← BLACK

//第4张图略:

 

五、红黑树插入的三种情况,即RB-INSERT-FIXUP(T, z)。操作过程(第5张):

//这幅图有个小小的问题,读者可能会产生误解。图中左侧所表明的情况2、情况3所标的位置都要标上一点。

//请以图中的标明的case1、case2、case3为准。一月三日。


六、红黑树插入的第一种情况(RB-INSERT-FIXUP(T, z)代码的具体分析一)

为了保证阐述清晰,重述下RB-INSERT-FIXUP(T, z)的源码:

RB-INSERT-FIXUP(T, z)
 1 while color[p[z]] = RED
 2     do if p[z] = left[p[p[z]]]
 3           then y ← right[p[p[z]]]
 4                if color[y] = RED
 5                   then color[p[z]] ← BLACK                    ▹ Case 1
 6                        color[y] ← BLACK                       ▹ Case 1
 7                        color[p[p[z]]] ← RED                   ▹ Case 1
 8                        z ← p[p[z]]                            ▹ Case 1
 9                   else if z = right[p[z]]
10                           then z ← p[z]                       ▹ Case 2
11                                LEFT-ROTATE(T, z)              ▹ Case 2
12                           color[p[z]] ← BLACK                 ▹ Case 3
13                           color[p[p[z]]] ← RED                ▹ Case 3
14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3
15           else (same as then clause
                         with "right" and "left" exchanged)
16 color[root[T]] ← BLACK

 //case1表示情况1,case2表示情况2,case3表示情况3.

 

ok,如上所示,相信,你已看到了。

咱们,先来透彻分析红黑树插入的第一种情况:

插入情况1,z的叔叔y是红色的。

第一种情况,即上述代码的第5-8行:
 5                   then color[p[z]] ← BLACK                    ▹ Case 1
 6                        color[y] ← BLACK                       ▹ Case 1
 7                        color[p[p[z]]] ← RED                   ▹ Case 1
 8                        z ← p[p[z]]                            ▹ Case 1

如上图所示,a:z为右孩子,b:z为左孩子。

只有p[z]和y(上图a中A为p[z],D为z,上图b中,B为p[z],D为y)都是红色的时候,才会执行此情况1.

 

咱们分析下上图的a情况,即z为右孩子时

因为p[p[z]],即c是黑色,所以将p[z]、y都着为黑色(如上图a部分的右边),

此举解决z、p[z]都是红色的问题,将p[p[z]]着为红色,则保持了性质5.

 

ok,看下我昨天画的图(第6张):

红黑树插入的第一种情况完。

 

七、红黑树插入的第二种、第三种情况

插入情况2:z的叔叔y是黑色的,且z是右孩子

插入情况3:z的叔叔y是黑色的,且z是左孩子

这俩种情况,是通过z是p[z]的左孩子,还是右孩子区别的。

 

参照上图,针对情况2,z是她父亲的右孩子,则为了保持红黑性质,左旋则变为情况3,此时z为左孩子,

因为z、p[z]都为黑色,所以不违反红黑性质(注,情况3中,z的叔叔y是黑色的,否则此种情况就变成上述情况1 了)。

 

ok,我们已经看出来了,情况2,情况3都违反性质4(一个红结点的俩个儿子都是黑色的)。

所以情况2->左旋后->情况3,此时情况3同样违反性质4,所以情况3->右旋,得到上图的最后那部分。

注,情况2、3都只违反性质4,其它的性质1、2、3、5都不违背。

 

好的,最后,看下我画的图(第7张):

 

 

 

八、接下来,进入红黑树的删除部分。

RB-DELETE(T, z)
 1 if left[z] = nil[T] or right[z] = nil[T]
 2    then y ← z
 3    else y ← TREE-SUCCESSOR(z)
 4 if left[y] ≠ nil[T]
 5    then x ← left[y]
 6    else x ← right[y]
 7 p[x] ← p[y]
 8 if p[y] = nil[T]
 9    then root[T] ← x
10    else if y = left[p[y]]
11            then left[p[y]] ← x
12            else right[p[y]] ← x
13 if y 3≠ z
14    then key[z] ← key[y]
15         copy y's satellite data into z
16 if color[y] = BLACK               //如果y是黑色的,
17    then RB-DELETE-FIXUP(T, x)   //则调用RB-DELETE-FIXUP(T, x) 
18 return y              //如果y不是黑色,是红色的,则当y被删除时,红黑性质仍然得以保持。不做操作,返回。

                               //因为:1.树种各结点的黑高度都没有变化。2.不存在俩个相邻的红色结点。

                                          //3.因为入宫y是红色的,就不可能是根。所以,根仍然是黑色的。

ok,第8张图,不必贴了。

 

 

九、红黑树删除之4种情况,RB-DELETE-FIXUP(T, x)之代码

RB-DELETE-FIXUP(T, x)
 1 while x ≠ root[T] and color[x] = BLACK
 2     do if x = left[p[x]]
 3           then w ← right[p[x]]
 4                if color[w] = RED
 5                   then color[w] ← BLACK                        ▹  Case 1
 6                        color[p[x]] ← RED                       ▹  Case 1
 7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1
 8                        w ← right[p[x]]                         ▹  Case 1
 9                if color[left[w]] = BLACK and color[right[w]] = BLACK
10                   then color[w] ← RED                          ▹  Case 2
11                        x ← p[x]                                  ▹  Case 2
12                   else if color[right[w]] = BLACK
13                           then color[left[w]] ← BLACK          ▹  Case 3
14                                color[w] ← RED                  ▹  Case 3
15                                RIGHT-ROTATE(T, w)              ▹  Case 3
16                                w ← right[p[x]]                 ▹  Case 3
17                         color[w] ← color[p[x]]                 ▹  Case 4
18                         color[p[x]] ← BLACK                    ▹  Case 4
19                         color[right[w]] ← BLACK                ▹  Case 4
20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4
21                         x ← root[T]                            ▹  Case 4
22        else (same as then clause with "right" and "left" exchanged)
23 color[x] ← BLACK
 

ok,很清楚,在此,就不贴第9张图了。

在下文的红黑树删除的4种情况,详细、具体分析了上段代码。

 

 

十、红黑树删除的4种情况

情况1:x的兄弟w是红色的。

情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。

情况3:x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

情况4:x的兄弟w是黑色的,且w的右孩子时红色的。

操作流程图:

 

 

ok,简单分析下,红黑树删除的4种情况:

针对情况1:x的兄弟w是红色的。

 5                   then color[w] ← BLACK                        ▹  Case 1
 6                        color[p[x]] ← RED                       ▹  Case 1
 7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1
 8                        w ← right[p[x]]                         ▹  Case 1

对策:改变w、p[z]颜色,再对p[x]做一次左旋,红黑性质得以继续保持。

x的新兄弟new w是旋转之前w的某个孩子,为黑色。

所以,情况1转化成情况2或3、4。

 

针对情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。

10                   then color[w] ← RED                          ▹  Case 2
11                        x <-p[x]                                  ▹  Case 2

如图所示,w的俩个孩子都是黑色的

对策:因为w也是黑色的,所以x和w中得去掉一黑色,最后,w变为红。

p[x]为新结点x,赋给x,x<-p[x]。

 

针对情况3:x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

13                           then color[left[w]] ← BLACK          ▹  Case 3
14                                color[w] ← RED                  ▹  Case 3
15                                RIGHT-ROTATE(T, w)              ▹  Case 3
16                                w ← right[p[x]]                 ▹  Case 3
w为黑,其左孩子为红,右孩子为黑

对策交换w和和其左孩子left[w]的颜色。 即上图的D、C颜色互换。:D。

并对w进行右旋,而红黑性质仍然得以保持。

现在x的新兄弟w是一个有红色右孩子的黑结点,于是将情况3转化为情况4.

 

针对情况4:x的兄弟w是黑色的,且w的右孩子时红色的。

17                         color[w] ← color[p[x]]                 ▹  Case 4
18                         color[p[x]] ← BLACK                    ▹  Case 4
19                         color[right[w]] ← BLACK                ▹  Case 4
20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4
21                         x ← root[T]                            ▹  Case 4

x的兄弟w为黑色,且w的右孩子为红色

对策:做颜色修改,并对p[x]做一次旋转,可以去掉x的额外黑色,来把x变成单独的黑色,此举不破坏红黑性质。

将x置为根后,循环结束。

 

最后,贴上最后的第10张图:

 

ok,红黑树删除的4中情况,分析完成。

 

结语:只要牢牢抓住红黑树的5个性质不放,而不论是树的左旋还是右旋,
不论是红黑树的插入、还是删除,都只为了保持和修复红黑树的5个性质而已。

顺祝各位, 元旦快乐。完。
      July、二零一零年十二月三十日。

-------------------------------------------------------

扩展阅读Left-Leaning Red-Black Trees, Dagstuhl Workshop on Data Structures, Wadern, Germany, February, 2008.
直接下载http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf 

          1、教你透彻了解红黑树

2、红黑树算法的实现与剖析
3、红黑树的c源码实现与剖析
4、一步一图一代码,R-B Tree
5、红黑树插入和删除结点的全程演示
6、红黑树的c++完整实现源码

 

版权声明
    版权所有,侵权必究

  • 11
    点赞
  • 437
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 125
    评论
因权限不够,只能上传20M,故分两部分上传 提供了有关使用算法和数据结构的一个详尽的介绍。Bucknall先从算法性能的讨论开始,涵盖了诸如数组、链表和二叉等内容。这本书强调了查找算法(如顺序和二分查找),另外也重点介绍了排序算法(包括冒泡排序、插入排序、希尔排序、快速排序和堆排序),此外还提供了有关的优化技术。不仅如此,作者还介绍了散列和散列表、优先队列、状态机和正则表达式以及诸如哈夫曼和LZ77等数据压缩技术。 随附光盘中有作者所开发的一个相当成功的自由软件库EZDSL,另外还有可运行于各版本Delphi上和Kylix上的源代码,此外还提供了TurboPower Software公司的可执行程序。 目录 前言 致谢 第1章什么是算法 1.1什么是算法 1.2算法和平台 1.3调试与测试 1.4小结 第2章数组 2.1数组 2.2Delphi中的数组类型 2.3TList类和指针数组 2.4磁盘数组 2.5小结 第3章链表、栈和队列 3.1单链表 3.2双向链表 3.3链表的优缺点 3.4栈 3.5队列 3.6小结 .第4章查找 4.1比较例程 4.2顺序查找 4.3二分查找 4.4小结 第5章排序 5.1排序算法 5.2排序基础知识 5.3小结 第6章随机算法 6.1随机数生成 6.2其他随机数分布 6.3跳表 6.4小结 第7章散列和散列表 7.1散列函数 7.2利用线性探测方法实现冲突解决 7.3其他开放定址机制 7.4利用链式方法解决冲突 7.5利用桶式方法解决冲突 7.6磁盘上的散列表 7.7小结 第8章二叉 8.1创建一个二叉 8.2叉的插入和删除 8.3二叉的遍历 8.4二叉的类实现 8.5二叉查找 8.6伸展 8.7 8.8小结 第9章 优先队列和堆排序 9.1优先队列 9.2堆 9.3堆排序 9.4扩展优先队列 9.5小结 第10章 状态机和正则表达式 10.1状态机 10.2正则表达式 10.3小结 第11章数据压缩 11.1数据表示 11.2数据压缩 11.3位流 11.4最小冗余压缩 11.5字典压缩 11.6小结 第12章 高级主题 12.1读者-写者算法 12.2生产者-消费者算法 12.3查找两文件的差别 12.4小结 后记

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 125
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

v_JULY_v

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值