poj 1284 原根

现在越来越感觉到  ACMer如果想成为大牛 要不断的宽展自己的知识面 学习各种知识  明白定理的推导过程 这样才会有更大进步。

//原根+完全剩余系:
//看了别人的解题报告 明白了原根的重要定理:
// 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
//假设一个数g对于P来说是原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,那么g可以称为是P的一个原根,
/*
这一题主要是用到了两个定理:
1)所有的奇素数都是有原根的
2)一个数n有原根,那么他有phi(phi(n))个模n不同余的原根(n是否素数都可用)
3)一个素数有原根,则有phi(n-1)个原根
证明:假设奇素数n的原根为r,那么r,r^1,r^2...r^phi(n)是模n不同余的,
由于(r^i)^(phi(n))=(r^phi(n))^i=1(mod n),1<=i<=phi(n),所以对于r^2,r^3..r^phi(n)来说ord(sub n) a|phi(n),即phi(n)是r^i模n的阶的倍数
又因为只有当(i,phi(n))=1时,r^i才是模n的原根,所以一共有phi(phi(n))个原根。
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
假设一个数g对于P来说是原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,那么g可以称为是P的一个原根
归根到底就是g^(P-1) = 1 (mod P)当且当指数为P-1的时候成立.(这里P是素数).
简单来说,g^i mod p ≠ g^j mod p (p为素数)
其中i≠j且i, j介於1至(p-1)之间
则g为p的原根。
算法】定理1:如果p有原根,则它恰有φ(φ(p))个不同的原根(无论p是否为素数都适用)
{x^i%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {x^i%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},
即为(p-1)的完全剩余系若x,x2...x(p-1)是(p-1)的完全剩余系,根据定理,可以推出若 gcd(x, p-1) = 1时,
(1,x,...,x(p-2))也是(p-1)的完全剩余系 因为若x^i != x^j (mod p-1),那么x*x^i != x*x^j (mod p-1),
与条件m矛盾,所以 x^i = x^j (mod p-1), 由此可以确定答案为Euler(p-1)
*/
//欧拉函数求的是 小于或等于 n 且与n互质的数的个数
//原根求的是 { (x^i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. 
//就是一个数x的i次方 (1<=i<=p-1) mod  p等于  a(1<=a<=p-1); 求x Euler(p-1);
#include<stdio.h>
#include<string.h>
int Euler(int n)
{
    int res=1;
    int tem=n;
    for(int i=2;i*i<=tem;i++)
    {
        if(n%i==0)
        {
            n/=i;
            res*=i-1;
            while(n%i==0)
            {
                n/=i;
                res*=i;
            }
        }
    }
    if(n>1)
    {
        res*=n-1;
    }
    return res;
}
int main()
{
    int T;
    while(scanf("%d",&T)!=EOF)
    {
      printf("%d\n",Euler(T-1));
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值