softmax的多分类

原创 2017年07月13日 17:38:37

关于多分类

我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。

关于softmax

softmax的函数为

P(i)=exp(θTix)Kk=1exp(θTkx)

可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

θTix为多个输入,训练其实就是为了逼近最佳的θT

如何多分类

从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

这里写图片描述

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

这里写图片描述

计算过程直接看下图,其中zLi即为θTix,三个输入的值分别为3、1、-3,ez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。

这里写图片描述

代价函数

对于训练集{(x(1),y(1)),...,(x(m),y(m))},有y(i){1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x),从向量角度来看,有,

hθ(x(i))=p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)p(y(i)=k|x(i);θ)=1kj=1eθTjx(i)eθT1x(i)eθT2x(i)eθTkx(i)

softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)},表示如果第i个样本的类别为j则yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。

J(θ)=1m[mi=1kj=11{y(i)=j}log(p(y(i)=j|x(i);θ))]

其中,p(y(i)=j|x(i);θ)=exp(θTix)Kk=1exp(θTkx)则,

J(θ)=1m[mi=1kj=11{y(i)=j}(θTjx(i)log(kl=1eθTlx(i)))]

一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θjαδθjJ(θ),则J(θ)θj求偏导,得到,

J(θ)θj=1mmi=1[kj=11{y(i)=j}θTjx(i)θjkj=11{y(i)=j}log(kl=1eθTlx(i)))θj]

=1mmi=1[1{y(i)=j}x(i)kj=11{y(i)=j}kl=1eθTlx(i)kl=1eθTlx(i)θj]

=1mmi=1[1{y(i)=j}x(i)x(i)eθTjx(i)kl=1eθTlx(i)]

=1mmi=1x(i)[1{y(i)=j}p(y(i)=j|x(i);θ)]

得到代价函数对参数权重的梯度就可以优化了。

使用场景

在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

随机森林算法

转载自:http://www.zilhua.com/629.html     1. 随机森林使用背景 1.1 随机森林定义 随机森林是一种比较新的机器学习模型。经典的机器学习模型是神经网络,...
  • zrjdds
  • zrjdds
  • 2015-12-01 19:15
  • 36948

Java使用iText生成word文件的完美解决方案(亲测可行)

JAVA生成WORD文件的方法目前有以下种: 一种是jacob 但是局限于windows平台 往往许多JAVA程序运行于其他操作系统 在此不讨论该方案 一种是pio但是他的excel处理很...

R语言中的Softmax Regression建模(MNIST手写体识别和文档多分类应用)

一、介绍 Softmax Regression模型本质还是一个多分类模型,对Logistic Regression 逻辑回归的拓展。如果将Softmax Regression模型和神经网络隐含层结合起...

SVM 的推导、特点、优缺点、多分类问题及应用

关于SVM的推导网上有一大堆的资料可以参考,在这里就不在叙述了,重点讲解SVM的其他问题 SVM有如下主要几个特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线...

美容医院多分类jquery导航

  • 2015-11-02 15:59
  • 450KB
  • 下载

svm多分类器详解

SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)