向量空间、列空间和零空间

向量空间

① ① 所有向量空间都必须包含零向量,即包含原点。

② ② 向量空间中任意向量的数乘、求和运算得到的向量也在该空间中,即向量空间要满足加法封闭和数乘封闭。

③ ③ 向量空间 R n R^n Rn包含所有的 n n n维向量,分量均为实数。

子空间

向量空间的子空间也必须满足加法封闭和数乘封闭,并且也包含零向量。

R 2 R^2 R2的子空间: ① R 2 ①R^2 R2本身; ② ② 过原点的直线; ③ ③ 零向量(即原点);

R 3 R^3 R3的子空间: ① R 3 ①R^3 R3本身; ② ② 过原点的平面; ③ ③ 过原点的直线; ④ ④ 零向量。

列空间

A = [ 1 3 2 3 4 1 ] A=\begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix} A=124331,其中各列属于 R 3 R^3 R3,那么所有列的所有线性组合构成 R 3 R^3 R3的一个子空间,在这里为过原点的一个平面,称该子空间为 A A A的列空间,记作 C ( A ) C(A) C(A)。如果 A A A的两列共线,则列空间为一条直线。

构造矩阵列空间的方法:取出各列,然后线性组合,则所有的线性组合构成列空间。

假设 P P P为三维空间中过原点的平面, L L L为过原点的直线( L L L不在 P P P内), P 、 L P、L PL都为子空间,而 P ∪ L P∪L PL不是子空间,因为加法不封闭, P ∩ L P∩L PL是子空间,因为只含零向量。一般情况下,若 S 、 T S、T ST均为子空间,则 S ∩ T S∩T ST也为子空间。

A x = b Ax=b Ax=b并不是对任意的 b b b都有解,只有 b b b属于 A A A的列空间时才有解。例如:
A x = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ b 1 b 2 b 3 b 4 ] Ax=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\b_3\\b_4\end{bmatrix} Ax=123411112345x1x2x3=b1b2b3b4
A A A的三个列向量的线性组合无法充满整个四维空间,所以可能有些 b b b不是这三个列向量的线性组合。

A A A中,其实第三列可以去掉,是前两列的线性组合,对结果没有影响。

零空间

A A A的零空间为 A x = 0 Ax=0 Ax=0中所有的解 x x x组成的集合,记作 N ( A ) N(A) N(A)。不管 A A A是什么矩阵,其零空间必然含有零向量。例如:
A x = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 0 0 0 0 ] Ax=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix} Ax=123411112345x1x2x3=0000
[ 0 0 0 ] 、 [ 1 1 − 1 ] ⋯ [ c c − c ] \begin{bmatrix}0\\0\\0\end{bmatrix}、\begin{bmatrix}1\\1 \\ -1\end{bmatrix}\cdots\begin{bmatrix}c\\c \\ -c\end{bmatrix} 000111ccc,即 c [ 1 1 − 1 ] c\begin{bmatrix}1\\1 \\ -1\end{bmatrix} c111 A A A的零空间,为三维空间中过原点的直线。

验证: A A A的零空间为子空间。

证明如下: ① ① 如果 A x = 0 并 且 A y = 0 Ax=0并且Ay=0 Ax=0Ay=0,那么 A ( a x + b y ) = a A x + b A y = 0 A(ax+by)=aAx+bAy=0 A(ax+by)=aAx+bAy=0,也就是说 v v v w w w都在零空间,那么其和 v v v w w w的线性组合也在零空间内。 ② ② 如果 A v = 0 Av=0 Av=0,那么 A ( a v ) = a A v = 0 A(av)=aAv=0 A(av)=aAv=0,即如果 v v v在零空间,那么其数乘 a v av av也在零空间内。综上所述,零空间满足加法和数乘封闭,并且包含零向量,所以为子空间。

如果 A x = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 1 2 3 4 ] Ax=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}1\\2\\3\\4\end{bmatrix} Ax=123411112345x1x2x3=1234,其所有的解构成子空间吗?

答案是否定的,因为解中不包含零向量,这里的解其实为三维空间中不过原点的直线。

构造子空间的两种方法:

① ① 取各列的线性组合;

② ② 从方程组中通过让 x x x满足特定条件来得到子空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值