Andrew Ng机器学习公开课(斯坦福)——1.学习动机与资料整理

原创 2017年03月11日 22:25:24
师兄推荐学习机器学习首推课程是:网易的斯坦福大学机器学习公开课:点击打开链接

看了第一节后就止不住的兴奋,从NG一开始提到对机器学习的解释:
Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance onT ,as measured by P,improves with eaperience E.
给出任务T,让机器去做,给出一个评价P,从经验E进行学习
                                                                                                                                        ----Tom Mitchell(1998)
之后更欣赏他的授课风格:板书的认真、每提出一个模型都要说为什么以及与之前的对比、还有每讲完一个知识点都会问大家听懂没进行提问。最让我兴奋的就是他讲到他的学生做的几个项目,反正当时的我看到这些时,是这样的。下面就是我开始学习这门课的一些准备资料和对课上提到的一些感兴趣内容的搜索了解。

原始课程和课件,课后习题都在那里可以下载,我查找博友整理的笔记,觉的最详细的应该是http://www.cnblogs.com/fxjwind/category/315338.html,笔记基本按照原英文课件翻译,而且含有课堂上的理解。

有趣的项目
1.用单张二维图像重构三维模型。来自 Learning 3-D Scene Structure from a Single Still Image这篇论文。主要思想是:把二维图像的像素进行聚类算法,划分为很多具有相同属性的区域,然后通过结构区域预测它的三维位置和方向,这种关系通过马尔科夫随机性场模型训练得到。可以参考这篇博客http://blog.csdn.net/zouxy09/article/details/8083553
2.鸡尾酒舞会。通过无监督学习算法分离混合的音频
3.那一句简练的ICA算法代码。
在两组声音中将它们分开的程序代码,Octave/Matlab:[W,s,v]=svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');
4.强化学习中的飞机飞行决策,各式功能的机器人,以及网页爬虫(关于网页爬虫,在学习python的时候顺带练了下手,但现在还不知道这与机器学习有多大关系)

这些就是促使我学习机器学习的动力,多么美好的知识!
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

近日,在网易公开课视频网站上看完了《机器学习》课程视频,现做个学后感,也叫观后感吧。  学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew ...
  • lotus___
  • lotus___
  • 2014年03月03日 09:15
  • 57625

【斯坦福公开课-机器学习】1.机器学习的动机和应用(吴恩达 Andrew Ng)

1机器学习的定义 1非正式定义 在一直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。 2正式的定义 对于一个计算机程序来说,给它一个任务T和一个性能测量方法P,如果在经验E的影响下,P...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——1、整体看一看

============================================================================【课程综述】==================...
  • mmc2015
  • mmc2015
  • 2015年01月02日 15:45
  • 2187

斯坦福大学公开课 :机器学习课程(Andrew Ng)——14、无监督学习:Independent Component Analysis(ICA)

1)问题描述     1、上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢?     2、经典的鸡尾酒宴会问题(cocktai...
  • mmc2015
  • mmc2015
  • 2015年01月06日 19:20
  • 1005

《机器学习》(Machine Learning)——Andrew Ng 斯坦福大学公开课学习笔记(一)

看到蘑菇街招聘的一个加分项是学过Andrew Ng的机器学习课程,于是找来看了下目录,大多数内容之前在PRML中有接触过,研究生课程智能信息处理中也有接触,但觉得不够系统,于是按斯坦福的公开课课表过一...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——6、监督学习:Support Vector Machine,破

6)拉格朗日对偶(Lagrange duality) 先抛开上一节的二次规划(最小值)问题。 对于存在等式约束的极值问题求解,通过引入拉格朗日算子构造拉格朗日公式就可以完美解决。 对于存在不等式约束...
  • mmc2015
  • mmc2015
  • 2015年01月04日 11:51
  • 1073

斯坦福大学公开课 :机器学习课程(Andrew Ng)——4、监督学习:Naive Bayes

0)GDA要求输入特征x是连续型随机变量;朴素贝叶斯分类方法适用于输入特征x是离散值的情况,主要目的是确定后验概率p(x|y)。 1)朴素贝叶斯模型(Naive Bayes Model)     ...
  • mmc2015
  • mmc2015
  • 2015年01月02日 20:16
  • 2242

斯坦福大学公开课 :机器学习课程(Andrew Ng)——13、无监督学习:Principal Component Analysis (PCA)

1)问题起源    真实的训练数据总是存在各种各样的问题:     1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多...
  • mmc2015
  • mmc2015
  • 2015年01月06日 15:23
  • 1310

斯坦福大学公开课 :机器学习课程(Andrew Ng)——3、监督学习:Gaussian Discriminant Analysis (GDA)

1)判别模型和生成模型(Discriminative/Generative Model) 2)高斯判别分析(Gaussian Discriminant Analysis(GDA))   2.1) 多...
  • mmc2015
  • mmc2015
  • 2015年01月02日 19:23
  • 2628

斯坦福大学公开课 :机器学习课程(Andrew Ng)——12、无监督学习:Factor Analysis

1)问题描述 2)协方差矩阵的限制 3)多元高斯分布的边缘分布和条件分布 4)因子分析的例子 5)因子分析模型 6)因子分析的EM估计‘ 7)简单总结 1)问题描述    之前我们考虑...
  • mmc2015
  • mmc2015
  • 2015年01月06日 14:31
  • 1351
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Andrew Ng机器学习公开课(斯坦福)——1.学习动机与资料整理
举报原因:
原因补充:

(最多只允许输入30个字)