左右逆和伪逆

通常我们所说的逆都是放在矩阵左右两边都能成立的逆,即 ,左逆等于右逆,如果A是m*n大小的矩阵,其秩为r,则存在上述的逆需满足条件m=n=r,也就是A为方阵并且满秩(full rank)。如果A不是满秩,而只是列满秩(fullcolumn rank),则A只存在左逆(left-inverse),列满秩说明r=n<m,也就是说列向量是无关的,而行向量不是,根据求解Ax=0:主变量、自由变量、特殊解,则A的零空间里只有零向量,并且Ax=b存在0个或1个解,A的左逆就是 ,因为如果将此左逆乘以A,可得到 ,注意A是m*n的长方矩阵(rectangular matrix,即非方阵),则ATA是个n*n对称矩阵,而且一定是满秩的,所以ATA是可逆的,所以上面相乘可得到单位阵。但如果把左逆放到A右边去乘就得不到单位阵了,放到右边乘后有 ,根据子空间投影,这是投影矩阵P,并且是向A的列空间上的投影,总之一个长方形矩阵不可能有一个放两边都成立的逆。再来讨论右逆(right-inverse),行满秩的情况下矩阵A存在右逆,行满秩表示r= m < n,m个行向量是线性无关的,而列向量不是,AT的零空间只包含零向量,因为没有行向量的组合等于零向量,并且Ax=b存在无数解,而A的零空间有n-m个自由变量,因此其零空间是n-m维的,A的右逆为 ,因为 ,同样AAT是m*m的对称矩阵,而且一定是满秩的,所以AAT是可逆的,所以上面相乘才可得到单位阵。将右逆放到左边乘,则有 ,也得到一个投影矩阵,只不过是向A的行空间投影。注意,左逆和右逆并不只有上面公式给出的两种,有可能有其他左逆或右逆,只不过公式给出的这两个是最简单,最好的。总结一下4种情况:

第1种:,满秩,存在两边逆,没有零空间和左零空间

第2种:列满秩,只存在左逆,没有零空间,有左零空间

第3种:行满秩,只存在右逆,没有左零空间,有零空间

第4种:最一般的情况,即r比m和n都小,存在伪逆(pseudo-inverse),有零空间和左零空间。

伪逆的意义

对于第4种最一般的情况,因为r<n,因此A存在零空间,因为r<m,因此AT也存在零空间,也就是A有左零空间,就是这些零空间把逆给毁了,因为如果一个矩阵乘以一个向量等于零向量,那逆是无论如何也求不出来的。设x是行空间中的一个向量,如果用A乘x,则Ax一定在列空间中,因为Ax是A的列向量的一个组合,如果取行空间中的所有向量都和A相乘,则可得到列空间中的所有向量,也就是说行空间中的一个向量x和列空间中的一个向量Ax是一一对应的,而且矩阵A存在零空间,零空间中的这些非零向量使得A的列向量组合变成零向量,因此列空间中的所有向量都能由行空间的分量以及零空间的分量与A相乘构成,如果只看行空间中的向量,不考虑零空间的部分,则由行空间到列空间的变换Ax将零空间中的分量消除了。A的映射方向是从行空间到列空间,很显然列空间任意向量到行空间某向量则是A的伪逆,常用记号A+表示,因此x= A+(Ax),伪逆消除了左零空间。

伪逆如何求

如何才能求出伪逆呢?可以从SVD着手,由奇异值分解可知,A的奇异值分解形式为 ,U和V都是正交阵,其逆矩阵很容易求,逆矩阵分别是它们的转置UT和VT,但中间的对角阵大小为m*n,秩为r,其形式为 ,所有问题出在对角阵上,对角阵没有真正的逆,该矩阵存在零空间,是不可逆的,但好在可逆阵 是最容易求逆的一类矩阵,因此只要对 中能求逆的地方求逆便可得到伪逆, 的伪逆为 ,大小为n*m,而 ,大小为m*m,并且这是向列空间上投影的投影矩阵,如果交换相乘顺序,则 ,大小为n*n,此为向行空间上的投影矩阵,最终矩阵A的伪逆为 ,这就是求伪逆的方法,借助SVD求伪逆的的好处就在所有问题都归到对角阵上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值