最小二乘法椭圆拟合

感谢原作者的分享

椭圆方程


      现在考虑一种特殊情况,假设二维点云拟合出的椭圆方程交点不在X轴或Y轴,即在上面的标准方程基础上发生“偏转+平移”,此时的椭圆方程形式该是什么样子?


先考虑旋转:

平面上一点P(X,Y)旋转θ角度,旋转后的坐标为(X',Y'),那么:
X' = X*cos(θ) - Y*sin(θ) , Y' = X*sin(θ) + Y*cos(θ) ;

旋转后椭圆 X^2/A^2 + Y^2/B^2 = 1 方程就变成了:[ X*cos(θ) - Y*sin(θ)]^2/A^2 +[X*sin(θ) + Y*cos(θ)]^2/B^2 = 1;

 

再考虑平移:X' = X+S ,Y' = Y+T ;

旋转和平移综合起来考虑,椭圆 X^2/A^2 + Y^2/B^2 = 1 方程就变成了:

[(X+S)*cos(θ) - (Y+T)*sin(θ)]^2/A^2 +[(X+S)*sin(θ) + (Y+T)*cos(θ)]^2/B^2 = 1;
 

c++代码实现

.h文件为:

 

//在这里,我实现了两种算法,一种是
//http://wenku.baidu.com/link?url=7kIrC8LoOMCtlmAH8yqkpUQfiKwWnVe4EoUJekkQSgQ1qTWfLAuEXTYvYTv7SATGIJYX4IxcTIB94-iO0SpUgztWgx661O2VEOwm_dvoSqO
//这篇文章给出的,核心也是最小二乘法,利用gauss消去法解方程组,不过他给出的代码有些小bug,所以我改了一下,也去掉了opencv的东西。
//	还有一个就是利用奇异值分解法来求超定方程的最小二乘法的思想来求出椭圆的五个参数,关于奇异值分解法可以参考
//http://blog.csdn.net/wangzhiqing3/article/details/7446444


/*************************************************************************
	版本:     2014-12-31
	功能说明: 对平面上的一些列点给出最小二乘的椭圆拟合,利用奇异值分解法
	解得最小二乘解作为椭圆参数。
	调用形式: cvFitEllipse2f(arrayx,arrayy,box);    
	参数说明: arrayx: arrayx[n],每个值为x轴一个点
arrayx: arrayy[n],每个值为y轴一个点
n     : 点的个数
box   : box[5],椭圆的五个参数,分别为center.x,center.y,2a,2b,xtheta
esp: 解精度,通常取1e-6,这个是解方程用的说
	 ***************************************************************************/




#include"stdafx.h"
#include<cstdlib>
#include<float.h>
#include<vector>
	 using namespace std;

class LSEllipse
{
public:
	LSEllipse(void);
	~LSEllipse(void);
	vector<double> getEllipseparGauss(vector<CPoint> vec_point);
	void cvFitEllipse2f( int *arrayx, int *arrayy,int n,float *box );
private:
	int SVD(float *a,int m,int n,float b[],float x[],float esp);
	int gmiv(float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka);
	int ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka);
	int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
};


.cpp文件为:

 

 

//点A (a,b)为椭圆上的一点,θ为OA与X轴的夹角,则参数方程为
//x=acosθ
//y=bsinθ
//x^2/a^2+y^2/b^2=1为标准方程


#include"stdafx.h"
#include "LSEllipse.h"
#include <cmath>

LSEllipse::LSEllipse(void)
{
}


LSEllipse::~LSEllipse(void)
{
}
//列主元高斯消去法
//A为系数矩阵,x为解向量,若成功,返回true,否则返回false,并将x清空。

bool RGauss(const vector<vector<double> > & A, vector<double> & x)
{
	x.clear();
	int n = A.size();
	int m = A[0].size();
	x.resize(n);
	//复制系数矩阵,防止修改原矩阵
	vector<vector<double> > Atemp(n);
	for (int i = 0; i < n; i++)
	{
		vector<double> temp(m);
		for (int j = 0; j < m; j++)
		{
			temp[j] = A[i][j];
		}
		Atemp[i] = temp;
		temp.clear();
	}
	for (int k = 0; k < n; k++)
	{
		//选主元
		double max = -1;
		int l = -1;
		for (int i = k; i < n; i++)
		{
			if (abs(Atemp[i][k]) > max)
			{
				max = abs(Atemp[i][k]);
				l = i;
			}
		}
		if (l != k)
		{
			//交换系数矩阵的l行和k行
			for (int i = 0; i < m; i++)
			{
				double temp = Atemp[l][i];
				Atemp[l][i] = Atemp[k][i];
				Atemp[k][i] = temp;
			}
		}
		//消元
		for (int i = k+1; i < n; i++)
		{
			double l = Atemp[i][k]/Atemp[k][k];
			for (int j = k; j < m; j++)
			{
				Atemp[i][j] = Atemp[i][j] - l*Atemp[k][j];
			}
		}
	}
	//回代
	x[n-1] = Atemp[n-1][m-1]/Atemp[n-1][m-2];
	for (int k = n-2; k >= 0; k--)
	{
		double s = 0.0;
		for (int j = k+1; j < n; j++)
		{
			s += Atemp[k][j]*x[j];
		}
		x[k] = (Atemp[k][m-1] - s)/Atemp[k][k];
	}
	return true;
}

vector<double>  LSEllipse::getEllipseparGauss(vector<CPoint> vec_point)
{
	vector<double> vec_result;
	double x3y1 = 0,x1y3= 0,x2y2= 0,yyy4= 0, xxx3= 0,xxx2= 0,x2y1= 0,yyy3= 0,x1y2= 0 ,yyy2= 0,x1y1= 0,xxx1= 0,yyy1= 0;
	int N = vec_point.size();
	for (int m_i = 0;m_i < N ;++m_i )
	{
		double xi = vec_point[m_i].x ;
		double yi = vec_point[m_i].y;
		x3y1 += xi*xi*xi*yi ;
		x1y3 += xi*yi*yi*yi;
		x2y2 += xi*xi*yi*yi; ;
		yyy4 +=yi*yi*yi*yi;
		xxx3 += xi*xi*xi ;
		xxx2 += xi*xi ;
		x2y1 += xi*xi*yi;

		x1y2 += xi*yi*yi;
		yyy2 += yi*yi;
		x1y1 += xi*yi;
		xxx1 += xi;
		yyy1 += yi;
		yyy3 += yi*yi*yi;
	}
	double resul[5];
	resul[0] = -(x3y1);
	resul[1] = -(x2y2);
	resul[2] = -(xxx3);
	resul[3] = -(x2y1);
	resul[4] = -(xxx2);
	long double Bb[5],Cc[5],Dd[5],Ee[5],Aa[5];
	Bb[0] = x1y3, Cc[0] = x2y1, Dd[0] = x1y2, Ee[0] = x1y1, Aa[0] = x2y2;
	Bb[1] = yyy4, Cc[1] = x1y2, Dd[1] = yyy3, Ee[1] = yyy2, Aa[1] = x1y3;
	Bb[2] = x1y2, Cc[2] = xxx2, Dd[2] = x1y1, Ee[2] = xxx1, Aa[2] = x2y1;
	Bb[3] = yyy3, Cc[3]= x1y1, Dd[3] = yyy2, Ee[3] = yyy1, Aa[3] = x1y2;
	Bb[4]= yyy2, Cc[4]= xxx1, Dd[4] = yyy1, Ee[4] = N, Aa[4]= x1y1;

	vector<vector<double>>Ma(5);
	vector<double>Md(5);
	for(int i=0;i<5;i++)
	{
		Ma[i].push_back(Aa[i]);
		Ma[i].push_back(Bb[i]);
		Ma[i].push_back(Cc[i]);
		Ma[i].push_back(Dd[i]);
		Ma[i].push_back(Ee[i]);
		Ma[i].push_back(resul[i]);
	}

	RGauss(Ma,Md);
	long double A=Md[0];
	long double B=Md[1];
	long double C=Md[2];
	long double D=Md[3];
	long double E=Md[4];
	double XC=(2*B*C-A*D)/(A*A-4*B);
	double YC=(2*D-A*C)/(A*A-4*B);
	long double fenzi=2*(A*C*D-B*C*C-D*D+4*E*B-A*A*E);
	long double fenmu=(A*A-4*B)*(B-sqrt(A*A+(1-B)*(1-B))+1);
	long double fenmu2=(A*A-4*B)*(B+sqrt(A*A+(1-B)*(1-B))+1);
	double XA=sqrt(fabs(fenzi/fenmu));
	double XB=sqrt(fabs(fenzi/fenmu2));
	double Xtheta=0.5*atan(A/(1-B))*180/3.1415926;
	if(B<1)
		Xtheta+=90;
	vec_result.push_back(XC);
	vec_result.push_back(YC);
	vec_result.push_back(XA);
	vec_result.push_back(XB);
	vec_result.push_back(Xtheta);
	return vec_result;
}

void  LSEllipse::cvFitEllipse2f(  int *arrayx, int *arrayy,int n,float *box )
{   
	float cx=0,cy=0;
	double rp[5], t;
	float *A1=new float[n*5];
	float *A2=new float[2*2];
	float *A3=new float[n*3];
	float *B1=new float[n],*B2=new float[2],*B3=new float[n];
	const double min_eps = 1e-6;
	int i;
	for( i = 0; i < n; i++ )
	{

		cx += arrayx[i]*1.0;
		cy += arrayy[i]*1.0;

	}
	cx /= n;
	cy /= n;
	for( i = 0; i < n; i++ )
	{
		int step=i*5;
		float px,py;
		px = arrayx[i]*1.0;
		py = arrayy[i]*1.0;
		px -= cx;
		py -= cy;
		B1[i] = 10000.0;
		A1[step] = -px * px;
		A1[step + 1] = -py * py;
		A1[step + 2] = -px * py;
		A1[step + 3] = px;
		A1[step + 4] = py;
	}
	float *x1=new float[5];
	//解出Ax^2+By^2+Cxy+Dx+Ey=10000的最小二乘解!
	SVD(A1,n,5,B1,x1,min_eps);
	A2[0]=2*x1[0],A2[1]=A2[2]=x1[2],A2[3]=2*x1[1];
	B2[0]=x1[3],B2[1]=x1[4];
	float *x2=new float[2];
	//标准化,将一次项消掉,求出center.x和center.y;
	SVD(A2,2,2,B2,x2,min_eps);
	rp[0]=x2[0],rp[1]=x2[1];
	for( i = 0; i < n; i++ )
	{
		float px,py;
		px = arrayx[i]*1.0;
		py = arrayy[i]*1.0;
		px -= cx;
		py -= cy;
		B3[i] = 1.0;
		int step=i*3;
		A3[step] = (px - rp[0]) * (px - rp[0]);
		A3[step+1] = (py - rp[1]) * (py - rp[1]);
		A3[step+2] = (px - rp[0]) * (py - rp[1]);

	}
	//求出A(x-center.x)^2+B(y-center.y)^2+C(x-center.x)(y-center.y)的最小二乘解
	SVD(A3,n,3,B3,x1,min_eps);

	rp[4] = -0.5 * atan2(x1[2], x1[1] - x1[0]);
	t = sin(-2.0 * rp[4]);
	if( fabs(t) > fabs(x1[2])*min_eps )
		t = x1[2]/t;
	else
		t = x1[1] - x1[0];
	rp[2] = fabs(x1[0] + x1[1] - t);
	if( rp[2] > min_eps )
		rp[2] = sqrt(2.0 / rp[2]);
	rp[3] = fabs(x1[0] + x1[1] + t);
	if( rp[3] > min_eps )
		rp[3] = sqrt(2.0 / rp[3]);

	box[0] = (float)rp[0] + cx;
	box[1]= (float)rp[1] + cy;
	box[2]= (float)(rp[2]*2);
	box[3] = (float)(rp[3]*2);
	if( box[2] > box[3] )
	{
		double tmp=box[2];
		box[2]=box[3];
		box[3]=tmp;
	}
	box[4] = (float)(90 + rp[4]*180/3.1415926);
	if( box[4] < -180 )
		box[4] += 360;
	if( box[4] > 360 )
		box[4] -= 360;
	delete []A1;
	delete []A2;
	delete []A3;
	delete []B1;
	delete []B2;
	delete []B3;
	delete []x1;
	delete []x2;

}

int LSEllipse::SVD(float *a,int m,int n,float b[],float x[],float esp) //奇异值分解
{  
	float *aa;
	float *u;
	float *v;
	aa=new float[n*m];
	u=new  float[m*m];
	v=new  float[n*n];

	int ka;
	int  flag;
	if(m>n)
	{ 
		ka=m+1;
	}else
	{
		ka=n+1;
	}

	flag=gmiv(a,m,n,b,x,aa,esp,u,v,ka);



	delete []aa;
	delete []u;
	delete []v;

	return(flag);
}





int LSEllipse::gmiv( float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka)  
{ 
	int i,j;
	i=ginv(a,m,n,aa,eps,u,v,ka);

	if (i<0) return(-1);
	for (i=0; i<=n-1; i++)
	{ x[i]=0.0;
	for (j=0; j<=m-1; j++)
		x[i]=x[i]+aa[i*m+j]*b[j];
	}
	return(1);
}


int LSEllipse::ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka)
{ 

	//  int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);

	int i,j,k,l,t,p,q,f;
	i=muav(a,m,n,u,v,eps,ka);
	if (i<0) return(-1);
	j=n;
	if (m<n) j=m;
	j=j-1;
	k=0;
	while ((k<=j)&&(a[k*n+k]!=0.0)) k=k+1;
	k=k-1;
	for (i=0; i<=n-1; i++)
		for (j=0; j<=m-1; j++)
		{ t=i*m+j; aa[t]=0.0;
	for (l=0; l<=k; l++)
	{ f=l*n+i; p=j*m+l; q=l*n+l;
	aa[t]=aa[t]+v[f]*u[p]/a[q];
	}
	}
	return(1);
}






int LSEllipse::muav(float a[],int m,int n,float u[],float v[],float eps,int ka)
{ int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
float *s,*e,*w;
//void ppp();
// void sss();
void ppp(float a[],float e[],float s[],float v[],int m,int n);
void sss(float fg[],float cs[]);

s=(float *) malloc(ka*sizeof(float));
e=(float *) malloc(ka*sizeof(float));
w=(float *) malloc(ka*sizeof(float));
it=60; k=n;
if (m-1<n) k=m-1;
l=m;
if (n-2<m) l=n-2;
if (l<0) l=0;
ll=k;
if (l>k) ll=l;
if (ll>=1)
{ for (kk=1; kk<=ll; kk++)
{ if (kk<=k)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];}
s[kk-1]=(float)sqrt(d);
if (s[kk-1]!=0.0)
{ ix=(kk-1)*n+kk-1;
if (a[ix]!=0.0)
{ s[kk-1]=(float)fabs(s[kk-1]);
if (a[ix]<0.0) s[kk-1]=-s[kk-1];
}
for (i=kk; i<=m; i++)
{ iy=(i-1)*n+kk-1;
a[iy]=a[iy]/s[kk-1];
}
a[ix]=1.0f+a[ix];
}
s[kk-1]=-s[kk-1];
}
if (n>=kk+1)
{ for (j=kk+1; j<=n; j++)
{ if ((kk<=k)&&(s[kk-1]!=0.0))
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1;
iy=(i-1)*n+j-1;
d=d+a[ix]*a[iy];
}
d=-d/a[(kk-1)*n+kk-1];
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+j-1;
iy=(i-1)*n+kk-1;
a[ix]=a[ix]+d*a[iy];
}
}
e[j-1]=a[(kk-1)*n+j-1];
}
}
if (kk<=k)
{ for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1;
u[ix]=a[iy];
}
}
if (kk<=l)
{ d=0.0;
for (i=kk+1; i<=n; i++)
	d=d+e[i-1]*e[i-1];
e[kk-1]=(float)sqrt(d);
if (e[kk-1]!=0.0)
{ if (e[kk]!=0.0)
{ e[kk-1]=(float)fabs(e[kk-1]);
if (e[kk]<0.0) e[kk-1]=-e[kk-1];
}
for (i=kk+1; i<=n; i++)
	e[i-1]=e[i-1]/e[kk-1];
e[kk]=1.0f+e[kk];
}
e[kk-1]=-e[kk-1];
if ((kk+1<=m)&&(e[kk-1]!=0.0))
{ for (i=kk+1; i<=m; i++) w[i-1]=0.0;
for (j=kk+1; j<=n; j++)
	for (i=kk+1; i<=m; i++)
		w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
for (j=kk+1; j<=n; j++)
	for (i=kk+1; i<=m; i++)
	{ ix=(i-1)*n+j-1;
a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
}
}
for (i=kk+1; i<=n; i++)
	v[(i-1)*n+kk-1]=e[i-1];
}
}
}
mm=n;
if (m+1<n) mm=m+1;
if (k<n) s[k]=a[k*n+k];
if (m<mm) s[mm-1]=0.0;
if (l+1<mm) e[l]=a[l*n+mm-1];
e[mm-1]=0.0;
nn=m;
if (m>n) nn=n;
if (nn>=k+1)
{ for (j=k+1; j<=nn; j++)
{ for (i=1; i<=m; i++)
u[(i-1)*m+j-1]=0.0;
u[(j-1)*m+j-1]=1.0;
}
}
if (k>=1)
{ for (ll=1; ll<=k; ll++)
{ kk=k-ll+1; iz=(kk-1)*m+kk-1;
if (s[kk-1]!=0.0)
{ if (nn>=kk+1)
for (j=kk+1; j<=nn; j++)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1;
iy=(i-1)*m+j-1;
d=d+u[ix]*u[iy]/u[iz];
}
d=-d;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+j-1;
iy=(i-1)*m+kk-1;
u[ix]=u[ix]+d*u[iy];
}
}
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; u[ix]=-u[ix];}
u[iz]=1.0f+u[iz];
if (kk-1>=1)
	for (i=1; i<=kk-1; i++)
		u[(i-1)*m+kk-1]=0.0;
}
else
{ for (i=1; i<=m; i++)
u[(i-1)*m+kk-1]=0.0;
u[(kk-1)*m+kk-1]=1.0;
}
}
}
for (ll=1; ll<=n; ll++)
{ kk=n-ll+1; iz=kk*n+kk-1;
if ((kk<=l)&&(e[kk-1]!=0.0))
{ for (j=kk+1; j<=n; j++)
{ d=0.0;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1;
d=d+v[ix]*v[iy]/v[iz];
}
d=-d;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1;
v[ix]=v[ix]+d*v[iy];
}
}
}
for (i=1; i<=n; i++)
	v[(i-1)*n+kk-1]=0.0;
v[iz-n]=1.0;
}
for (i=1; i<=m; i++)
	for (j=1; j<=n; j++)
		a[(i-1)*n+j-1]=0.0;
m1=mm; it=60;
while (1==1)
{ if (mm==0)
{ ppp(a,e,s,v,m,n);
free(s); free(e); free(w); return(1);
}
if (it==0)
{ ppp(a,e,s,v,m,n);
free(s); free(e); free(w); return(-1);
}
kk=mm-1;
while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
{ d=(float)(fabs(s[kk-1])+fabs(s[kk]));
dd=(float)fabs(e[kk-1]);
if (dd>eps*d) kk=kk-1;
else e[kk-1]=0.0;
}
if (kk==mm-1)
{ kk=kk+1;
if (s[kk-1]<0.0)
{ s[kk-1]=-s[kk-1];
for (i=1; i<=n; i++)
{ ix=(i-1)*n+kk-1; v[ix]=-v[ix];}
}
while ((kk!=m1)&&(s[kk-1]<s[kk]))
{ d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d;
if (kk<n)
	for (i=1; i<=n; i++)
	{ ix=(i-1)*n+kk-1; iy=(i-1)*n+kk;
d=v[ix]; v[ix]=v[iy]; v[iy]=d;
}
if (kk<m)
	for (i=1; i<=m; i++)
	{ ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
d=u[ix]; u[ix]=u[iy]; u[iy]=d;
}
kk=kk+1;
}
it=60;
mm=mm-1;
}
else
{ ks=mm;
while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
{ d=0.0;
if (ks!=mm) d=d+(float)fabs(e[ks-1]);
if (ks!=kk+1) d=d+(float)fabs(e[ks-2]);
dd=(float)fabs(s[ks-1]);
if (dd>eps*d) ks=ks-1;
else s[ks-1]=0.0;
}
if (ks==kk)
{ kk=kk+1;
d=(float)fabs(s[mm-1]);
t=(float)fabs(s[mm-2]);
if (t>d) d=t;
t=(float)fabs(e[mm-2]);
if (t>d) d=t;
t=(float)fabs(s[kk-1]);
if (t>d) d=t;
t=(float)fabs(e[kk-1]);
if (t>d) d=t;
sm=s[mm-1]/d; sm1=s[mm-2]/d;
em1=e[mm-2]/d;
sk=s[kk-1]/d; ek=e[kk-1]/d;
b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0f;
c=sm*em1; c=c*c; shh=0.0;
if ((b!=0.0)||(c!=0.0))
{ shh=(float)sqrt(b*b+c);
if (b<0.0) shh=-shh;
shh=c/(b+shh);
}
fg[0]=(sk+sm)*(sk-sm)-shh;
fg[1]=sk*ek;
for (i=kk; i<=mm-1; i++)
{ sss(fg,cs);
if (i!=kk) e[i-2]=fg[0];
fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
fg[1]=cs[1]*s[i];
s[i]=cs[0]*s[i];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
	for (j=1; j<=n; j++)
	{ ix=(j-1)*n+i-1;
iy=(j-1)*n+i;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
sss(fg,cs);
s[i-1]=fg[0];
fg[0]=cs[0]*e[i-1]+cs[1]*s[i];
s[i]=-cs[1]*e[i-1]+cs[0]*s[i];
fg[1]=cs[1]*e[i];
e[i]=cs[0]*e[i];
if (i<m)
	if ((cs[0]!=1.0)||(cs[1]!=0.0))
		for (j=1; j<=m; j++)
		{ ix=(j-1)*m+i-1;
iy=(j-1)*m+i;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
e[mm-2]=fg[0];
it=it-1;
}
else
{ if (ks==mm)
{ kk=kk+1;
fg[1]=e[mm-2]; e[mm-2]=0.0;
for (ll=kk; ll<=mm-1; ll++)
{ i=mm+kk-ll-1;
fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
if (i!=kk)
{ fg[1]=-cs[1]*e[i-2];
e[i-2]=cs[0]*e[i-2];
}
if ((cs[0]!=1.0)||(cs[1]!=0.0))
	for (j=1; j<=n; j++)
	{ ix=(j-1)*n+i-1;
iy=(j-1)*n+mm-1;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
}
}
else
{ kk=ks+1;
fg[1]=e[kk-2];
e[kk-2]=0.0;
for (i=kk; i<=mm; i++)
{ fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
fg[1]=-cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
	for (j=1; j<=m; j++)
	{ ix=(j-1)*m+i-1;
iy=(j-1)*m+kk-2;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
}
}
}
}

free(s);free(e);free(w); 
return(1);


}


void ppp(float a[],float e[],float s[],float v[],int m,int n) 
{ int i,j,p,q;
float d;
if (m>=n) i=n;
else i=m;
for (j=1; j<=i-1; j++)
{ a[(j-1)*n+j-1]=s[j-1];
a[(j-1)*n+j]=e[j-1];
}
a[(i-1)*n+i-1]=s[i-1];
if (m<n) a[(i-1)*n+i]=e[i-1];
for (i=1; i<=n-1; i++)
	for (j=i+1; j<=n; j++)
	{ p=(i-1)*n+j-1; q=(j-1)*n+i-1;
d=v[p]; v[p]=v[q]; v[q]=d;
}
return;
}


void sss(float fg[],float cs[])
{ float r,d;
if ((fabs(fg[0])+fabs(fg[1]))==0.0)
{ cs[0]=1.0; cs[1]=0.0; d=0.0;}
else 
{ d=(float)sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
if (fabs(fg[0])>fabs(fg[1]))
{ d=(float)fabs(d);
if (fg[0]<0.0) d=-d;
}
if (fabs(fg[1])>=fabs(fg[0]))
{ d=(float)fabs(d);
if (fg[1]<0.0) d=-d;
}
cs[0]=fg[0]/d; cs[1]=fg[1]/d;
}
r=1.0;
if (fabs(fg[0])>fabs(fg[1])) r=cs[1];
else
	if (cs[0]!=0.0) r=1.0f/cs[0];
fg[0]=d; fg[1]=r;
return;
}


//传入样本点,返回椭圆的5个参数

vector<double> getEllipsepar(vector<CvPoint> vec_point)
{
	vector<double> vec_result;
	double  x3y1 = 0,x1y3= 0,x2y2= 0,yyy4= 0, xxx3= 0,xxx2= 0,x2y1= 0,yyy3= 0,x1y2= 0 ,yyy2= 0,x1y1= 0,xxx1= 0,yyy1= 0;



	int N = vec_point.size();
	cout << N << endl;
	for (int m_i = 0;m_i < N ;++m_i )
	{
		double xi = vec_point[m_i].x ;
		double yi = vec_point[m_i].y;
		x3y1   += xi*xi*xi*yi ;
		x1y3   += xi*yi*yi*yi;
		x2y2   += xi*xi*yi*yi; ;
		yyy4   +=yi*yi*yi*yi;
		xxx3   += xi*xi*xi ;
		xxx2   += xi*xi ;
		x2y1 += xi*xi*yi;

		x1y2 += xi*yi*yi;
		yyy2 += yi*yi;
		x1y1 += xi*yi;
		xxx1 += xi;
		yyy1 += yi;
		yyy3 += yi*yi*yi;
	}

	long double resul1 = -(x3y1);
	long double resul2 = -(x2y2);
	long double resul3 = -(xxx3);
	long double resul4 = -(x2y1);
	long double resul5 = -(xxx2);
	long double B1 = x1y3,     C1 = x2y1,  D1 = x1y2,  E1 = x1y1,  A1 = x2y2;
	long double B2 = yyy4,     C2 = x1y2,  D2 = yyy3,  E2 = yyy2,  A2 = x1y3;
	long double B3 = x1y2,     C3 = xxx2,  D3 = x1y1,  E3 = xxx1,  A3 = x2y1;
	long double B4 = yyy3,     C4 = x1y1,  D4 = yyy2,  E4 = yyy1,  A4 = x1y2;
	long double B5 = yyy2,     C5 = xxx1,  D5 = yyy1,  E5 = N,     A5 = x1y1;

	//
	CvMat* Ma    = cvCreateMat(5,5,CV_64FC1);
	CvMat* Md    = cvCreateMat(5,1,CV_64FC1);
	CvMat* Mb    = cvCreateMat(5,1,CV_64FC1);
	//

	cvmSet(Mb,0,0,resul1);
	cvmSet(Mb,1,0,resul2);
	cvmSet(Mb,2,0,resul3);
	cvmSet(Mb,3,0,resul4);
	cvmSet(Mb,4,0,resul5);



	cvmSet(Ma,0,0,A1);
	cvmSet(Ma,0,1,B1);
	cvmSet(Ma,0,2,C1);
	cvmSet(Ma,0,3,D1);
	cvmSet(Ma,0,4,E1);


	cvmSet(Ma,1,0,A2);
	cvmSet(Ma,1,1,B2);
	cvmSet(Ma,1,2,C2);
	cvmSet(Ma,1,3,D2);
	cvmSet(Ma,1,4,E2);


	cvmSet(Ma,2,0,A3);
	cvmSet(Ma,2,1,B3);
	cvmSet(Ma,2,2,C3);
	cvmSet(Ma,2,3,D3);
	cvmSet(Ma,2,4,E3);

	cvmSet(Ma,3,0,A4);
	cvmSet(Ma,3,1,B4);
	cvmSet(Ma,3,2,C4);
	cvmSet(Ma,3,3,D4);
	cvmSet(Ma,3,4,E4);

	cvmSet(Ma,4,0,A5);
	cvmSet(Ma,4,1,B5);
	cvmSet(Ma,4,2,C5);
	cvmSet(Ma,4,3,D5);
	cvmSet(Ma,4,4,E5);




	cvSolve(Ma, Mb, Md);
	long double A = cvmGet(Md,0,0);
	long double B = cvmGet(Md,1,0);
	long double C = cvmGet(Md,2,0);
	long double D = cvmGet(Md,3,0);
	long double E = cvmGet(Md,4,0);

	double XC = (2*B*C - A*D) /(A*A-4*B);
	double YC =(2*D-A*D)/(A*A-4*B);

	long double fenzi = 2*(A*C*D-B*C*C-D*D+4*E*B-A*A*E);

	long double fenmu =(A*A-4*B)   * (B- sqrt(A*A+ (1-B) * (1-B) )  +1);
	long double femmu2 =(A*A-4*B)  * (B+ sqrt(A*A+ (1-B) * (1-B) )  +1);
	double XA =sqrt(fabs(fenzi/fenmu));
	double XB =sqrt(fabs(fenzi/femmu2));
	double Xtheta =atan(sqrt((XA*XA-XB*XB*B)/(XA*XA*B-XB*XB))+0.0001)*180/3.1415926;

	vec_result.push_back(XC);
	vec_result.push_back(YC);
	vec_result.push_back(XA);
	vec_result.push_back(XB);
	vec_result.push_back(Xtheta);
	return vec_result;
}

 

 

 

 

 

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
FPGA最小二乘法椭圆拟合是一种在可编程逻辑器件上实现的椭圆拟合算法。最小二乘法是一种数学优化方法,旨在通过最小化误差平方和来拟合数据点到最合适的椭圆模型。 在FPGA中实现最小二乘法椭圆拟合可以通过以下步骤进行: 1. 数据采集:首先,需要从传感器或其他数据源收集到一组数据点,这些数据点包含了待拟合椭圆形状。 2. 数据预处理:在进行椭圆拟合之前,需要对收集到的数据进行预处理。这包括去除噪声、检测离群点、数据归一化等处理步骤。 3. 椭圆参数求解:在FPGA中,可以使用最小二乘法算法,通过迭代方式计算出最合适的椭圆参数。这些参数包括椭圆的位置、长轴和短轴长度、椭圆的旋转角度等。 4. 拟合结果输出:一旦椭圆参数被计算出来,可以将这些参数输出到外部设备或者用于其他后续处理。 使用FPGA实现最小二乘法椭圆拟合可以带来一些优势。FPGA具有并行计算的能力,可以加速数据处理过程。此外,FPGA的低功耗和可重构性使得其适用于嵌入式系统和实时应用,例如在机器视觉领域中的应用。 然而,FPGA的设计过程需要具备一定的硬件描述语言和数字电路设计知识,以及对拟合算法的理解。此外,FPGA的资源有限,需要综合考虑资源利用和计算性能之间的平衡。 总之,FPGA最小二乘法椭圆拟合是一种在可编程逻辑器件上实现的优化算法,通过并行计算加速了数据处理过程,并且在嵌入式系统和实时应用中具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值