OpenCV
文章平均质量分 83
Nani_xiao
计算机视觉、感知算法、深度学习爱好者;传说中的“程序媛”;本博客用于记录业余时间的自学习笔记,欢迎交流讨论。
展开
-
图像预处理——图像梯度化
OpenCV_图像梯度化#include "stdafx.h"#include "cv.h"#include "cxcore.h"#include "highgui.h"using namespace std;using namespace cv;int main(int argc, char **argv){ CvPoint center;//定义一个二维坐标的点 do原创 2015-04-29 17:13:01 · 2020 阅读 · 0 评论 -
OpenCV_HOG特征维数计算
hog(cv::Size(64,48),cv::Size(8,6),cv::Size(8,6),cv::Size(4,3),9); 其中,cvSize(64,48)表示窗口的大小,cvSize(8, 6)表示块(block)大小,cvSize(8,6)表示块滑动增量(blockStride)大小,cvSize(4, 3)表示胞元(cell)大小,9表示每个胞单元中梯度直方图的数量。原创 2015-05-13 15:14:28 · 2197 阅读 · 0 评论 -
行人检测 opencv
#include "OpenCV.h"#include "std.h"int main(int argc, char** argv){ char* filename = "1.jpg"; //带有检测目标的源图像 Mat img; //定义梯度方向直方图 HOGDescriptor hog; //读取一块特征数组,也就是训练出的检测目标的特征,例如人,车 hog.se转载 2014-10-29 10:35:40 · 1378 阅读 · 0 评论 -
opencv中Mat格式的数据点访问at
发现Mat类中的at方法对于获取图像矩阵某点的RGB值或者改变某点的值很方便,对于单通道的图像,则可以使用:[cpp] view plain copyimage.at(i, j) 来获取或改变该点的值,而RGB通道的则可以使用:[cpp] view plain copy转载 2017-04-07 16:38:44 · 9388 阅读 · 0 评论 -
OpenCV 级联分类器训练(一)——步骤和方法
关于原理,其他博客有的已经介绍的很详细了,这里主要把我进行训练时的步骤列出来,有的是根据别人的博客参考的,但进行过程中还是会出错,现在把我真正使用的步骤列出来,以供参考一、关于正样本的准备正样本的选取原则正样本的尺寸不是必须一致的,但是要和生成的正样本矢量文件中的宽高有相同的比例(训练过程中,会根据矢量文件中设置的宽高,自动对正样本进行缩放)正样本图片中可以包含背景信息,但是不能太多。因为如果正原创 2015-03-26 09:57:59 · 8479 阅读 · 1 评论 -
OpenCV小例程——火焰检测(完整代码)
火焰检测小程序前几天,偶然看到了An Early Fire-Detection Method Based on Image Processing ,The Author is:Thou-Ho (Chao-Ho) Chen, Ping-Hsueh Wu, and Yung-Chuen Chiou这篇文章,参照他的颜色模型做了一个火焰检测的小程序,以此记录并与大家分享。针对视频,若是加上火原创 2015-01-30 15:51:49 · 30545 阅读 · 42 评论 -
OpenCV小例程_KLT 特征提取
KLT 特征提取KLT算法的理论部分参考自:http://blog.csdn.net/lanbing510/article/details/40451317opencv中 封装好了 KLT特征点提取函数//调用函数进行Shi-Tomasi角点检测 goodFeaturesToTrack( src1_copy, corners1, maxCo原创 2015-05-26 10:43:11 · 5512 阅读 · 1 评论 -
OpenCV小例程_条形码检测
OpenCV_检测图像中的条形码看了StackOverflow上的这篇文章后,加以改进,基于C++实现先上几张效果图:算法的主要流程为:1、首先将读入图片归一化到640*480大小以内的,图片太大的话,一是运行速度慢,而是影响检测效果;2、将彩色图转换成灰度图;3、得到灰度图分别在水平方向和垂直方向上的梯度幅值;4、将水平方向上梯度幅值减去垂直方向上的梯原创 2015-05-05 16:11:19 · 3750 阅读 · 0 评论 -
OpenCV小例程_把彩色照片转换成素描卡通片
OpenCV_把彩色照片转换成素描卡通片#include"stdafx.h"//#include//#include#include #include #include using namespace cv;using namespace std;int main(){ Mat src,smallImg,tmp,bigImg,gray,edges,masks,dst; const int MEDIAN_B原创 2014-10-29 13:38:22 · 4209 阅读 · 1 评论 -
OpenCV级联分类器训练(二)——参数注解
紧接上一篇文章 opencv 级联分类器训练步骤和方法级联分类器训练中命令行和训练过程中参数注释:原创 2015-03-26 20:59:08 · 4586 阅读 · 1 评论 -
OpenCV小例程——人脸检测
OpenCV_人脸检测#include "cv.h"#include "highgui.h"#include #include #include #include #include #include #include #include #include using namespace std;static CvMemStorage原创 2015-04-29 15:48:57 · 1823 阅读 · 0 评论 -
OpenCV小例程——分区域不同的显示视频
Python3+OpenCV在一个显示画面上同时显示两个不同的视频,希望能给需要的你提供个思路。原创 2019-08-19 17:09:58 · 558 阅读 · 0 评论 -
OpenCV中GPU模块使用
转载自http://www.cnblogs.com/dwdxdy/archive/2013/08/07/3244508.htmlCUDA基本使用方法在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下:1.主机代码执行;2.传输数据到GPU;3.确定grid,block大小;4.调用内核函数,GPU运行程序;5.传输结果到CPU转载 2015-08-04 17:16:56 · 2335 阅读 · 0 评论 -
利用Mask将不规则区域保存下来 算法实现
利用Mask将不规则区域保存下来Point2f pt1, pt2, pt3, pt4; pt1.x = 17; pt1.y = 75; pt2.x = 374; pt2.y = 48; pt3.x = 44; pt3.y = 249; pt4.x = 394; pt4.y = 234; line(img, pt1, pt2, Scalar(0,0,255),1); l原创 2015-07-08 16:38:44 · 1842 阅读 · 0 评论 -
opencv基本图像处理
1.反转图像函数:cv::flip()void flip(InputArray src, OutputArray dst, int flipCode); 参数fipCode: 整数,水平发转;0垂直反转;负数,水平垂直均反转。2.sobel边缘检测函数:cv::sobel()例程://从文件中读入图像 const char* imagename = "lena.BMP转载 2014-12-04 16:09:39 · 2501 阅读 · 0 评论 -
dressPantsPositives.txt(977) : parse errorDone. Created 976samples
1、生产vec文件时,报错dressPantsPositives.txt(421) : parse errorDone. Created 583 samples是因为调用默认cans原创 2014-10-24 16:18:20 · 2615 阅读 · 4 评论 -
在图像中绘制透明白色背景
在图像中绘制透明白色背景Mat ColorMask(130,300,CV_8UC3,Scalar(218,239,239)); //绘制半透明背景 Mat roiA(frame,Rect(0,0,300,130));addWeighted( roiA,0.6,ColorMask,0.4,0,roiA);原创 2014-09-26 14:26:40 · 2340 阅读 · 0 评论 -
OpenCV矩阵运算
OpenCV矩阵运算 加 减 乘 除 深度等一、矩阵Mat I,img,I1,I2,dst,A,B;double k,alpha;Scalar s;1.加法I=I1+I2;//等同add(I1,I2,I);add(I1,I2,dst,mask,dtype);scaleAdd(I1,scale,I2,dst);//dst=scale*I1+I2;2.减法absdiff(I1,I2,I);//I=|I1-I2转载 2014-10-15 15:13:20 · 855 阅读 · 0 评论 -
Traincascade Error: Bad argument (Can not get new positive sample. The most possible reason is insuf
级联分类器训练时,到某个级数时报错:Traincascade Error: Bad argument (Can not get new positive sample. Themost possible reason is insufficient count of samples in given vec-file.)解析:原创 2014-10-24 16:22:38 · 3908 阅读 · 0 评论 -
找轮廓,清除不满足条件的轮廓,将满足条件的轮廓内的图像拷贝出来
找轮廓,清除不满足条件的轮廓,将满足条件的轮廓内的图像拷贝出来Mat img = imread("0.jpg");Mat res;cvtColor(img,res,CV_BGR2GRAY);vector<vector<Point> > contours_set;//保存轮廓提取后的点集及拓扑关系findContours(res,contours_...原创 2014-10-23 17:29:38 · 1884 阅读 · 0 评论 -
轮廓 画外接圆外接矩形
轮廓 画外接圆外接矩形原创 2014-10-23 17:39:00 · 2888 阅读 · 0 评论 -
OpenCV_将多幅图像叠加并求平均值
Mat矩阵 将多幅图像叠加并求平均值原创 2014-07-17 15:28:19 · 10316 阅读 · 7 评论 -
OpenCV_grabcut 抠图效果
转载,找不到原地址了,等找到了再补上grabCut 抠图#include "stdafx.h"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include using namespace std;using namespace cv;static void转载 2015-01-29 15:31:27 · 2835 阅读 · 1 评论 -
OpenCV_常用图像处理函数与功能注释
1、cvLoadImage:将图像文件加载至内存; 2、cvNamedWindow:在屏幕上创建一个窗口; 3、cvShowImage:在一个已创建好的窗口中显示图像; 4、cvWaitKey:使程序暂停,等待用户触发一个按键操作; 5、cvReleaseImage:释放图像文件所分配的内存; 6、cvDestroyWindow:销毁显示图像文件的转载 2015-04-10 10:46:19 · 1581 阅读 · 1 评论 -
OpenCV_Mat 转 IplImage*类型
示例代码是需要mat转换为img:Mat mat,mat1; // mat1是临时变量IplImage * img;mat1=mat.clone();// 包括数据的深度复制,以防对mat数据的更改img=cvCreateImage(cvSize(mat.cols,mat.rows),8,3); //根据实际进行初始化img->imageData=(char*)mat1.dat原创 2013-11-18 09:54:19 · 1349 阅读 · 0 评论 -
OpenCV_EM算法
直接调用opencv中的EM算法:在头文件中定义:CvEM em;CvEMParams em_params;但这时候会提示CvEM 未定义。查了相关资料发现CvEM类在opencv2.4.9版本中被放在legacy.hpp中,因此调用时需要加头文件#include原创 2015-05-26 17:15:41 · 1630 阅读 · 0 评论 -
OpenCV_利用均值漂移(Mean Shift)和getHueHistogram进行目标跟踪
OpenCV_利用均值漂移(Mean Shift)和getHueHistogram进行目标跟踪待详解。。。。原创 2015-05-18 16:17:26 · 1697 阅读 · 0 评论 -
python2和python3实现在图片上加汉字
文章目录Python2 在图片上加汉字代码实现Python3 在图片上加汉字代码实现遇到的问题python2和python3实现在图片上加汉字,最主要的区别还是内部编码方式不一样导致的,在代码上表现为些许的差别。理解了内部编码原理也就不会遇到这些问题了,以下代码是在WIN10系统上时测好用的。Python2 在图片上加汉字代码实现# -*- coding: cp936 -*-import ...原创 2019-08-19 20:21:49 · 11275 阅读 · 1 评论