由于Haar特征是矩形中黑色区域所有像素值的和减去白色区域所有像素值的和。在之前(《计算Haar特征个数》)我们看到,24*24的图片中,有115984个特征,远远大于其像素个数。如果计算每个特征的像素和,计算量会非常大,而且很多次运算是重复的。
Paul Viola提出一种利用积分图像法快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simple features》)。简单说来,就是先构造一张“积分图”(Integral image),也叫Summed Area Table,之后任何一个Haar矩形特征都可以通过查表的方法(Look Up Table)和有限次简单运算得到,大大减少了运算次数。
将矩形表示为:
其中,x,y表示起点坐标,w,h表示宽,高,a表示角度。
矩形内像素值之和表示为:

本文介绍了如何利用积分图像(Summed Area Table)和旋转积分图像(Rotated Summed Area Table)快速计算Haar特征,这种方法由Paul Viola提出,极大地减少了计算大量矩形特征时的运算次数。通过查表和简单的运算,可以轻松获取0°和45°旋转矩形内的像素和。
最低0.47元/天 解锁文章
4941

被折叠的 条评论
为什么被折叠?



