积分图计算

积分图,又称Summed Area Table,是图像处理中的重要工具,由Paul Viola提出用于加速Haar特征计算。它能减少重复计算像素值的次数,常用于Haar特征、均值滤波和二值化等操作。通过积分图,可以实现自适应阈值化,降低运算复杂度。积分图的每个点存储其左上角所有像素之和,且大小为(W + 1) X (H + 1),确保边界处理的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

积分图及其应用

  Paul Viola提出一种利用积分图快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simple features》)。Haar特征的计算需要重复计算目标区域的像素值,使用积分图能大大减少计算量,达到实时计算Haar特征的目的。简单来说,就是先构造一张“积分图”(integral image),也叫Summed Area Table,之后任何一个Haar矩形特征都可以通过查表的方法(Look Up Table)和有限次简单运算得到,大大减少了运算次数。所以但凡需要重复计算目标区域内像素值和的场合,积分图都能派上用场。

       积分图是图像中十分常用的方法,最初是在Haar特征的快速计算中学到(参考博文:利用积分图像法快速计算Haar特征),后来发现在均值滤波,二值化等图像处理方法中也十分常见。如使用积分图像实现自适应阈值化:

自适应阈值是一种局部方法。它的原理是根据每个像素的邻域(如5x5)计算阈值,如将每个像素的值与指定的邻域的平均值进行比较,如果某像素的值与它的局部平均值差别很大,就会被当作异常值在阈值化过程中被分离。

如若不采用积分图像,则每个像素比较时,都需要进行5x5次加法运算;而采用积分图像,运算复杂度不随邻域大小而改变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值