【3D】迭代最近点算法 Iterative Closest Points

本文介绍了3D空间中的迭代最近点算法(Iterative Closest Points, ICP)的基本原理和实现步骤,包括数据预处理、运动参数(旋转和平移)的计算,以及如何通过迭代优化匹配点的对应关系来求解空间变换。" 113009602,10494343,Java版Mc模组开发:环境搭建常见问题与解决方案,"['Java开发', 'Minecraft模组', '开发环境', 'Forge', 'IDE']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

研究生课程系列文章参见索引《在信科的那些课

基本原理

假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points Algorithm)。

基本思想是:根据某种几何特性对数据进行匹配,并设这些匹配点为假想的对应点,然后根据这种对应关系求解运动参数。再利用这些运动参数对数据进行变换。并利用同一几何特征,确定新的对应关系,重复上述过程。


迭代最近点法目标函数

三维空间中两个3D点, ,他们的欧式距离表示为:

三维点云匹配问题的目的是找到P和Q变化的矩阵R和T,对于 ,利用最小二乘法求解最优解使:

最小时的R和T。

数据预处理

实验中采集了五个面的点如下所示:
由于第一组(第一排第1个)和第三组(第一排第三个)采集均为模型正面点云,所以选用一和三做后续的实验。
首先利用Geomagic Studio中删除点的工具,去除原始数据中的一些隔离的噪点,效果如下:


<
评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值