研究生课程系列文章参见索引《在信科的那些课》
基本原理
假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points Algorithm)。
基本思想是:根据某种几何特性对数据进行匹配,并设这些匹配点为假想的对应点,然后根据这种对应关系求解运动参数。再利用这些运动参数对数据进行变换。并利用同一几何特征,确定新的对应关系,重复上述过程。
迭代最近点法目标函数
三维空间中两个3D点,
,他们的欧式距离表示为:


三维点云匹配问题的目的是找到P和Q变化的矩阵R和T,对于
,
,利用最小二乘法求解最优解使:



最小时的R和T。
数据预处理
实验中采集了五个面的点如下所示:



<