强大的PropertyGrid

 PropertyGrid, 做工具一定要用这东西.....

把要编辑的对象看成类的话, 所有要编辑的属性就是成员

嗯嗯, 最近看了几眼Ogitor, 它对于PropertyGrid的使用就很不错

所有要编辑的对象(灯光, 模型, 粒子等等)都有一个共同的基类, 每当选中一个可编辑对象时, 右边的属性框里就显示出当前对象的属性...(公司那个编辑器要多土就有多土-_-)

尽管Ribbon界面看起来很酷, 我还是对MFC提不起兴趣来...

.net里的PropertyGrid更方便, 一点一点来:

属性自动绑定:

只需要一句

它就能自动识别出Human类中的property, 并且自动关联到PropertyGrid中:

对属性进行分类并加注释:

太爽啦~颜色自己就能识别........

弄个Image类型居然还能自己选择文件...NB啊

除了基本类型之外, Font, Size, Color等复杂类型也可以支持, 那么自定义类型呢?

如果只是像上面那样放上的话, 只会得到个灰色不可编辑的东西~

要想让PropertyGrid能够展开Vector3属性, 指定一下TypeConverter就可以了:

对于枚举类型, PropertyGrid会自动显示成下拉框. 把性别改成枚举看看:

另外, 还可以弹出自定义的编辑界面, 比如随时间变化的曲线啦(经常用来做效果...)

这个, 暂时没需求, 不实现了, 有兴趣的参考:Getting the Most Out of the .NET Framework PropertyGrid Control

### 使用ArcGIS进行蒸散发(ET)计算的方法 在ArcGIS中执行蒸散发(ET)计算涉及多个步骤,通常依赖于特定模型或算法来估算不同时间段内的蒸散发量。虽然ArcGIS本身并不内置专门用于直接计算ET的功能模块,但可以通过集成外部数据源和利用地理信息系统(GIS)的空间分析能力实现这一目标。 #### 准备工作 为了准备必要的输入数据集,在ArcGIS环境中需完成如下操作: - 创建并打开一个新的地图文档[^1]。 - 加载所需的遥感影像和其他辅助数据层,如气象站观测记录、土地覆盖分类图等。 - 定义适当的数据框坐标系统以确保所有参与运算的数据具有相同的投影参考框架。 #### 获取所需数据 对于基于卫星遥感的ET估算,MODIS系列传感器提供的全球尺度产品是一个重要资源。特别是针对高精度需求的应用场景,《京津唐地区城市扩张对地表蒸散发的影响》一文中提到的研究方法可以作为指导原则之一[^2]。此外,Penman-Monteith-Leuning (PML_V2) 蒸散量产品提供了高质量的时间序列ET数据及其组成部分,适用于更广泛的区域研究[^4]。 #### 实施具体计算流程 一种常见的做法是在ArcGIS平台内调用Python脚本来运行预设好的ET计算模型。下面给出了一段简化版代码片段展示如何读取栅格文件以及应用简单的线性回归方程模拟ET值的变化趋势: ```python import arcpy from arcpy.sa import * # 设置工作空间路径 arcpy.env.workspace = "D:/ET_data" # 输入LST, NDVI等因子栅格图像名称列表 input_rasters = ["lst_2023.tif", "ndvi_2023.tif"] # 输出预测ET结果存储位置及文件名 output_et = "et_estimated_2023.tif" # 执行多元线性回归建模得到最终ET估计值 outRaster = MultipleOutputRegression(input_rasters, output_et) # 将生成的结果保存到指定目录下 outRaster.save(output_et) ``` 请注意上述示例仅为示意性质,并未体现完整的物理机制描述;实际项目实施过程中应当依据选定的具体理论基础构建更为严谨合理的数学表达式来进行ET量化评估。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值