MxNet系列——get_started——index

翻译 2017年02月08日 15:57:32

MXNet: 一个大规模的深度学习框架

MXNet 是一个开源框架,它允许你在多种设备(从云架构到移动设备)上定义,训练和部署深度神经网络。MXNet 是一个可拓展的深度学习工具,它允许快速训练模型,支持灵活的编程模型和多种编程语言。 MXNet 允许混合使用命令式编程和符号编程,以最大化两者的高效性和生产力。MXNet 是在一个动态依赖调度器上构建的【dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly】。最后的图优化层使得符号运算既高速,又使得内存利用率高。MXNet 是一个便携的,轻便的深度学习工具,可以拓展到多GPUs和多台机器上。

  • 灵活的编程模型
    MXNet 同时支持命令式编程和符号编程,最大化性能和生成力。

  • 从云端到客户端便携
    MXNet 可以运行在CPUs,GPUs,集群,服务器,桌面和移动设备上。

  • 支持多种编程语言
    MXNet 支持使用 Python, R, Scala, Julia, 和 C++ 构建和训练模型。已经训练好的模型可以在更多种编程语言(比如Matlab和JavaScript)中用于预测任务。

  • 本地分布式训练
    MXNet 支持在多CPU/GPU机器上进行分布式训练,以有效利用云计算。

  • 性能优化
    使用一个优化的 C++ 后端引擎,让I/O和计算都并行化。无论使用哪种编程语言,都能最优地运行。

MXNet 开源社区

  • 支持多种模型 – 训练和部署最新的深度卷积神经网络 (CNNs) 和 长短时记忆网络 (LSTMs)。

  • 参考例子库 – 构建了简单的教程(附代码),比如,图像分类,语言模型,神经艺术,语音识别等。

  • 开放协作的社区 – 来自顶尖大学和工业界伙伴的支持和贡献。

配置和安装

你可以在Amazon Linux, Ubuntu/Debian, OS X, 和 Windows等操作系统上运行MXNet。MXNet 也可以在 Docker 和类似于AWS的云上运行。MXNet现在支持的语言包括:Python, R, Julia 和 Scala等。

如果你是在Amazon Linux 或 Ubuntu 上运行 Python/R,你可以通过使用 Git Bash 脚本来快速安装MXNet工具包及其相关依赖。

有关配置MXNet的更多内容,请参考以下内容:

入门 | 张量计算

下面,学习以下张量计算接口。张量计算接口通常比符号接口更加灵活,常用于实现网络层,定义权重更新规则,和调试。

Julia

julia> using MXNet

julia> a = mx.ones((2,3), mx.gpu())
mx.NDArray{Float32}(2,3)

julia> Array{Float32}(a * 2)
2×3 Array{Float32,2}:
 2.0  2.0  2.0
 2.0  2.0  2.0

Python

Python接口类似于 numpy.NDArray:

“`python

import mxnet as mx
a = mx.nd.ones((2, 3), mx.gpu())
print ((a * 2).asnumpy())
[[ 2. 2. 2.]
[ 2. 2. 2.]]
“`

R

“`r

require(mxnet)
Loading required package: mxnet
a <- mx.nd.ones(c(2,3))
a
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
a + 1
[,1] [,2] [,3]
[1,] 2 2 2
[2,] 2 2 2
“`

Scala

你可以在纯Scala语言中,执行张量和矩阵计算:

“`scala
scala> import ml.dmlc.mxnet._
import ml.dmlc.mxnet._

scala> val arr = NDArray.ones(2, 3)
arr: ml.dmlc.mxnet.NDArray = ml.dmlc.mxnet.NDArray@f5e74790

scala> arr.shape
res0: ml.dmlc.mxnet.Shape = (2,3)

scala> (arr * 2).toArray
res2: Array[Float] = Array(2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

scala> (arr * 2).shape
res3: ml.dmlc.mxnet.Shape = (2,3)

“`

推荐的入门教程

下一步

Win10下MxNet安装手记

依赖软件环境 Python2.7 64位版(mxnet也必须为64位版,由于系统bug,mxnet只能在Win10下运行) 转换caffemodel到mxnet所需的工具 ...
  • hollyholly5
  • hollyholly5
  • 2016年07月08日 11:34
  • 1774

MxNet系列——how_to——env_var

环境变量=====================环境可以修改MXNet的一些设置。一般情况下,你不需要修改这些设置。本节将它们罗列出来,用于参考。设置线程数目 MXNET_GPU_WORKER_NT...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:48
  • 1172

MxNet系列——how_to——new_op

如何创建新的操作符(网络层)本节内容描述了创建新的MXNet操作符(或网络)的过程。我们已经尽了最大努力为最常用的案例提供高性能操作符。然而,如果你需要自定义一个网络层,比如新的损失函数,有两个选择:...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:38
  • 1234

MxNet系列——get_started——windows_setup

Windows上安装 MXNet在Windows上,你可以直接下载和安装已经编译过的MXNet工具包,或者自行下载,构建,安装MXNet。构建MXNet共享库(动态链接库)两种方法:既可以直接下载并使...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:58
  • 831

MxNet系列——get_started——setup

综述你可以在Amazon Linux, Ubuntu/Debian, OS X, 和 Windows等操作系统上运行MXNet。MXNet 也可以在 Docker 和类似于AWS的云上运行。MXNet...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月09日 11:27
  • 1036

MxNet系列——get_started——amazonlinux_setup

Installing MXNet on Ubuntu对于 Amazon Linux 操作系统上的Python用户来说,MXNet 提供了一系列的 Git Bash 脚本,来安装MXNet的依赖和MXN...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月09日 11:26
  • 403

MxNet系列——get_started——osx_setup

OS X 上安装 MXNet安装MXNet可以分为2步: 从MXNet的C++源代码构建共享库。 安装MXNet的特定语言的包(接口)。 注意: 修改 make/config.mk 文件可以改变编译选...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月09日 11:25
  • 570

MxNet系列——get_started——ubuntu_setup

Installing MXNet on UbuntuMXNet现在支持的语言包括:Python, R, Julia 和 Scala等。 对于Ubuntu操作系统上的Python和R用户来说,MXNet...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:59
  • 464

MxNet系列——how_to——index

MXNet 怎么办系列How-tos 提供了一系列的有关安装,基本概念,说明,命令和使用预训练模型完成的例程指南。下面的主题解释了基本概念,并为特定任务提供了步骤。其中一些包含了使用预训练模型完成的例...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:46
  • 326

MxNet系列——model_zoo——index

MXNet的模型园地MXNet 突出了学术论文中报告的最先进模型的快速实现。我们的模型园地(Modle Zoo)包含了完整的模型,Python脚本,预训练的权重和如何进行微调的说明文档。如何贡献一个预...
  • xuezhisdc
  • xuezhisdc
  • 2017年02月08日 15:55
  • 1440
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MxNet系列——get_started——index
举报原因:
原因补充:

(最多只允许输入30个字)