PCL系列——三维重构之移动立方体算法

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


PCL系列

说明

通过本教程,我们将会学会:

  • 如果通过移动立方体算法进行三维点云重构。
  • 程序支持两种文件格式:*.pcd*.ply
  • 程序先读取点云文件;然后计算法向量,并将法向量和点云坐标放在一起;接着使用移动立方体算法进行重构,最后显示结果。

操作

  • 在VS2010 中新建一个文件 recon_marchingCubes.cpp,然后将下面的代码复制到文件中。
  • 参照之前的文章,配置项目的属性。设置包含目录和库目录和附加依赖项。
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/marching_cubes_hoppe.h>
#include <pcl/surface/marching_cubes_rbf.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>

int main (int argc, char** argv)
{
	// 确定文件格式
	char tmpStr[100];
	strcpy(tmpStr,argv[1]);
	char* pext = strrchr(tmpStr, '.');
	std::string extply("ply");
	std::string extpcd("pcd");
	if(pext){
		*pext='\0';
		pext++;
	}
	std::string ext(pext);
	//如果不支持文件格式,退出程序
	if (!((ext == extply)||(ext == extpcd))){
		std::cout << "文件格式不支持!" << std::endl;
		std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
		return(-1);
	}

	//根据文件格式选择输入方式
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>) ; //创建点云对象指针,用于存储输入
	if (ext == extply){
		if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read ply file!\n") ;
			return -1;
		}
	}
	else{
		if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read pcd file!\n") ;
			return -1;
		}
	}

  // 估计法向量
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
  pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud(cloud);
  n.setInputCloud(cloud);
  n.setSearchMethod(tree);
  n.setKSearch(20);
  n.compute (*normals); //计算法线,结果存储在normals中
  //* normals 不能同时包含点的法向量和表面的曲率

  //将点云和法线放到一起
  pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
  pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
  //* cloud_with_normals = cloud + normals


  //创建搜索树
  pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
  tree2->setInputCloud (cloud_with_normals);

  //初始化MarchingCubes对象,并设置参数
	pcl::MarchingCubes<pcl::PointNormal> *mc;
	mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
	/*
  if (hoppe_or_rbf == 0)
    mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
  else
  {
    mc = new pcl::MarchingCubesRBF<pcl::PointNormal> ();
    (reinterpret_cast<pcl::MarchingCubesRBF<pcl::PointNormal>*> (mc))->setOffSurfaceDisplacement (off_surface_displacement);
  }
	*/

	//创建多变形网格,用于存储结果
  pcl::PolygonMesh mesh;

  //设置MarchingCubes对象的参数
  mc->setIsoLevel (0.0f);
  mc->setGridResolution (50, 50, 50);
  mc->setPercentageExtendGrid (0.0f);

  //设置搜索方法
  mc->setInputCloud (cloud_with_normals);

	//执行重构,结果保存在mesh中
	mc->reconstruct (mesh);
	
	//保存网格图
	pcl::io::savePLYFile("result.ply", mesh);

	// 显示结果图
  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0); //设置背景
  viewer->addPolygonMesh(mesh,"my"); //设置显示的网格
  viewer->addCoordinateSystem (1.0); //设置坐标系
  viewer->initCameraParameters ();
  while (!viewer->wasStopped ()){
    viewer->spinOnce (100);
    boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  }

  return (0);
}

  • 重新生成项目。
  • 到改项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。
  • 在命令行中输入recon_marchingCubes.exe bunny.points.ply,执行程序。得到如下图所示的结果。
    移动立方体算法的结果
  • 6
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
PCL(点云库)是一个开源的点云库,可以用于处理和分析三维点云数据。而曲面重建是指利用点云数据生成连续曲面模型的过程。而移动立方体是一种常用的方法,在曲面重建中被广泛应用。 移动立方体方法在曲面重建中的基本思想是将点云数据划分为许多小的立方体单元,并通过在每个立方体单元内的点云数据进行插值和拟合来生成平滑的曲面。具体步骤如下: 1. 网格化:首先将点云数据进行网格化,将整个点云空间划分为一系列立方体单元。可以根据需要调整立方体单元的大小。 2. 法线估计:对于每个立方体单元,需要估计其中点云数据的法向量。常用的方法是通过最近邻点进行法线估计。 3. 邻域搜索:对于每个立方体单元,需要找到其邻域内的点云数据,用于插值和拟合。 4. 曲面重建:根据邻域内的点云数据进行插值和拟合,生成平滑的曲面。常用的方法是使用多项式拟合或基于样条函数的插值方法。 5. 后处理:对于生成的曲面模型,可以进行后处理操作,如去噪、平滑和曲面优化等,以进一步改善曲面的质量。 移动立方体方法在曲面重建中的优点是简单且易于实现,适用于处理大规模的点云数据。然而,由于其是一种局部方法,可能会导致曲面之间的不连续性。此外,对于包含较复杂几何信息的点云数据,移动立方体方法可能无法很好地重建出精确的曲面模型。因此,在实际应用中,可以根据具体需求选择适合的曲面重建方法。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值