Caffe (CNN, deep learning )

本文介绍了Caffe——一种用于特征提取的卷积神经网络工具箱。它以C++编写,支持CPU和GPU运算,并具备Python和Matlab接口。文章详细解释了使用Caffe的原因,其内部架构,以及如何构建用于训练的LevelDB数据库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Caffe -----------Convolution Architecture For Feature Embedding (Extraction) 

1、Caffe 是什么东东?

     CNN (Deep Learning) 工具箱

     C++ 语言架构

     CPU 和GPU 无缝交换

      Python 和matlab的封装

      但是,Decaf只是CPU 版本。


2、为什么要用Caffe?

      运算速度快。简单 友好的架构 用到的一些库:

      Google Logging library (Glog): 一个C++语言的应用级日志记录框架,提供了C++风格的流操作和各种助手宏.

     lebeldb(数据存储): 是一个google实现的非常高效的kv数据库,单进程操作。

     CBLAS library(CPU版本的矩阵操作)

    CUBLAS library (GPU 版本的矩阵操作)


3、Caffe 架构



4、预处理图像的leveldb构建

     输入:一批图像和label (2和3)

     输出:leveldb (4)

     指令里包含如下信息: 

     1)conver_imageset (构建leveldb的可运行程序)

     2)train/  (此目录放处理的jpg或者其他格式的图像)  

     3)label.txt  (图像文件名及其label信息)

     4)输出的leveldb文件夹的名字 

     5)CPU/GPU (指定是在cpu上还是在gpu上运行code)


5、CNN网络配置文件

    1)Imagenet_solver.prototxt   (包含全局参数的配置的文件)

    2)Imagenet.prototxt (包含训练网络的配置的文件)

    3)Imagenet_val.prototxt (包含测试网络的配置文件)


下载网址:http://caffe.berkeleyvision.org/

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值