Caffe (CNN, deep learning )

原创 2014年05月25日 14:38:15

Caffe -----------Convolution Architecture For Feature Embedding (Extraction) 

1、Caffe 是什么东东?

     CNN (Deep Learning) 工具箱

     C++ 语言架构

     CPU 和GPU 无缝交换

      Python 和matlab的封装

      但是,Decaf只是CPU 版本。


2、为什么要用Caffe?

      运算速度快。简单 友好的架构 用到的一些库:

      Google Logging library (Glog): 一个C++语言的应用级日志记录框架,提供了C++风格的流操作和各种助手宏.

     lebeldb(数据存储): 是一个google实现的非常高效的kv数据库,单进程操作。

     CBLAS library(CPU版本的矩阵操作)

    CUBLAS library (GPU 版本的矩阵操作)


3、Caffe 架构



4、预处理图像的leveldb构建

     输入:一批图像和label (2和3)

     输出:leveldb (4)

     指令里包含如下信息: 

     1)conver_imageset (构建leveldb的可运行程序)

     2)train/  (此目录放处理的jpg或者其他格式的图像)  

     3)label.txt  (图像文件名及其label信息)

     4)输出的leveldb文件夹的名字 

     5)CPU/GPU (指定是在cpu上还是在gpu上运行code)


5、CNN网络配置文件

    1)Imagenet_solver.prototxt   (包含全局参数的配置的文件)

    2)Imagenet.prototxt (包含训练网络的配置的文件)

    3)Imagenet_val.prototxt (包含测试网络的配置文件)


下载网址:http://caffe.berkeleyvision.org/

CNN+caffe学习4:自己训练网络全过程

资料下载地址:https://github.com/EmmaW8/caffe.git branch选择201701,code文件夹里面是需要用到的执行文件,models里面是我自己设计的5层CN...
  • baidu_17806763
  • baidu_17806763
  • 2017年01月09日 15:05
  • 2152

我所写的CNN框架 VS caffe

一个月前,自己模仿caffe实现了一个卷积神经网络的框架。 一个月前,自己模仿caffe实现了一个卷积神经网络的框架。 相同点 1无缝支持CPU和GPU模式,GPU模式使用...
  • linger2012liu
  • linger2012liu
  • 2014年07月25日 19:19
  • 8184

caffe中如何可视化cnn各层的输出

正如caffe的examples所提,CNN model并不是一个黑盒,caffe提供了工具来查看cnn各层的所有输出1.查看CNN各层的activations值的结构(即每一层的输出)代码如下:# ...
  • tina_ttl
  • tina_ttl
  • 2016年04月01日 05:45
  • 19071

基于Caffe的CNN剪枝

背景 传统的CNN网络训练完之后,全连接层的权值矩阵动辄就几十万、几百万个参数值,可见CNN模型的庞大,但是仔细观察CNN的权值矩阵就会发现,里面有很多的参数的绝对值都很小,比如在-0.001到0....
  • zhouyusong_bupt
  • zhouyusong_bupt
  • 2016年07月05日 17:03
  • 7619

caffe(2)配置文件.prototxt的理解

首先建立一个net,net有多层构成,层有不同的类型。网络结构定义在.prototxt文件中。下面详细介绍: 1. 数据层即输入层。在caffe中数据以blob的格式进行存储和传输,在这一层中是实现数...
  • u014202086
  • u014202086
  • 2017年07月17日 13:48
  • 994

深度卷积网络CNN与图像语义分割

转载请注明出处: http://xiahouzuoxin.github.io/notes/级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别3:Demo跑起来...
  • xiahouzuoxin
  • xiahouzuoxin
  • 2015年08月19日 22:33
  • 74006

caffe中如何可视化cnn各层的输出

正如caffe的examples所提,CNN model并不是一个黑盒,caffe提供了工具来查看cnn各层的所有输出1.查看CNN各层的activations值的结构(即每一层的输出)代码如下:# ...
  • tina_ttl
  • tina_ttl
  • 2016年04月01日 05:45
  • 19071

自己定义CNN网络模型并使用caffe训练

caffe自带的例子中对mnist手写体数字训练使用的卷积神经网络是在lenet_train_test.prototxt中定义的,隐含层包含了2个卷积层,2个池化层,2个全连接层,1个激活函数层。网络...
  • dcrmg
  • dcrmg
  • 2017年06月28日 23:54
  • 961

我所写的CNN框架 VS caffe

一个月前,自己模仿caffe实现了一个卷积神经网络的框架。 一个月前,自己模仿caffe实现了一个卷积神经网络的框架。 相同点 1无缝支持CPU和GPU模式,GPU模式使用...
  • linger2012liu
  • linger2012liu
  • 2014年07月25日 19:19
  • 8184

CNN+caffe学习4:自己训练网络全过程

资料下载地址:https://github.com/EmmaW8/caffe.git branch选择201701,code文件夹里面是需要用到的执行文件,models里面是我自己设计的5层CN...
  • baidu_17806763
  • baidu_17806763
  • 2017年01月09日 15:05
  • 2152
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Caffe (CNN, deep learning )
举报原因:
原因补充:

(最多只允许输入30个字)