关闭

Caffe (CNN, deep learning )

23310人阅读 评论(5) 收藏 举报
分类:

Caffe -----------Convolution Architecture For Feature Embedding (Extraction) 

1、Caffe 是什么东东?

     CNN (Deep Learning) 工具箱

     C++ 语言架构

     CPU 和GPU 无缝交换

      Python 和matlab的封装

      但是,Decaf只是CPU 版本。


2、为什么要用Caffe?

      运算速度快。简单 友好的架构 用到的一些库:

      Google Logging library (Glog): 一个C++语言的应用级日志记录框架,提供了C++风格的流操作和各种助手宏.

     lebeldb(数据存储): 是一个google实现的非常高效的kv数据库,单进程操作。

     CBLAS library(CPU版本的矩阵操作)

    CUBLAS library (GPU 版本的矩阵操作)


3、Caffe 架构



4、预处理图像的leveldb构建

     输入:一批图像和label (2和3)

     输出:leveldb (4)

     指令里包含如下信息: 

     1)conver_imageset (构建leveldb的可运行程序)

     2)train/  (此目录放处理的jpg或者其他格式的图像)  

     3)label.txt  (图像文件名及其label信息)

     4)输出的leveldb文件夹的名字 

     5)CPU/GPU (指定是在cpu上还是在gpu上运行code)


5、CNN网络配置文件

    1)Imagenet_solver.prototxt   (包含全局参数的配置的文件)

    2)Imagenet.prototxt (包含训练网络的配置的文件)

    3)Imagenet_val.prototxt (包含测试网络的配置文件)


下载网址:http://caffe.berkeleyvision.org/

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1783989次
    • 积分:19076
    • 等级:
    • 排名:第494名
    • 原创:285篇
    • 转载:157篇
    • 译文:19篇
    • 评论:257条
    最新评论