Deep Learning的训练工具~caffe

本文介绍了Caffe深度学习框架,重点讲述了如何在没有GPU的情况下切换到CPU模式进行训练。首先,文章回顾了Theano和Torch在深度学习中的作用。接着,详细阐述了Caffe的特性,包括它的优势、安装配置过程,特别是在Windows环境下配置CUDA的步骤。当遇到不兼容问题时,文章指导如何切换到CPU模式进行训练。最后,展示了Caffe在CIFAR-10数据集上的训练流程,包括数据转换、求均值文件以及训练网络的步骤。
摘要由CSDN通过智能技术生成

1. Deep Learning工具—— Theano 

Theanodeep learningPython库,要求首先熟悉Python语言和numpy,建议读者先看Theano basic tutorial,然后按照Getting Started 下载相关数据并用gradient descent的方法进行学习。  


2、Torch 是很多机器学习和人工智能项目的核心

Facebook 也在研究关于深度学习的技术,同时也已经做了很多相关工作,包括其开源的用于机器学习的Torch7 计算框架。Torch 是很多机器学习和人工智能项目的核心,不管是在学校研究或者是类似 Google、Twitter 和因特尔这样的公司。


3、Caffe是一个清晰而高效的深度学习框架

本文详细介绍了caffe的优势、架构,网络定义、各层定义,Caffe的安装与配置,解读了Caffe实现的图像分类模型AlexNet,并演示了CIFAR-10在caffe上进行训练与学习。

Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作。

Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换:

 1)Caffe的安装与配置

Caffe需要预先安装一些依赖项,首先是CUDA驱动。不论是CentOS还是Ubuntu都预装了开源的nouveau显卡驱动(SUSE没有这种问题),如果不禁用,则CUDA驱动不能正确安装。以Ubuntu为例,介绍一下这里的处理方法,当然也有其他处理方法。

1:Caffe的主版本只

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值