监督学习之分类和逻辑回归

现在让我们谈论分类问题。这就像逻辑回归一样,除了我们想预测的值只能取很少数量的离散值。现在,我们将会聚焦二值分类问题,在这个问题中只能取两个值,0和1。(大多数我们在这里提到的将可以推广至多类问题。)比如说,如果我们正努力构建一个邮件的垃圾邮件分类器,可以是一封电子邮件的一些特征,如果它是一封垃圾邮件是1,否则是0。0也被称作负类,1被称作正类,有时候他们也由“-”和“+”符号表示。给定,相对应的也被称作训练样例的标签


5  逻辑回归


忽略 是离散值的事实,我们可以走进分类问题,使用我们老的线性回归算法在给定 的情况下来预测 。然而,很简单构造这个方法工作很差的例子。直觉上,当我们知道 取大于1或者小于0的值,这个方法也没有意义。
为了修正这个,让我们改变假设 的形式。我们将会选择


这里


被称作逻辑函数或者Sigmoid函数。这里有一个 的图像:


注意当 趋于1,当 趋于0。而且, 总是在0和1中间,因此 也是。就像以前,我们仍旧保持让 的惯例,以致
现在,让我们选择 为(上面)给定的。其他的从0到1平湖增长的函数也可以使用,但是由于几个原因,这几个原因我们只会看到(当我们讨论GLMS和当我们讨论生成学习算法时),这个逻辑函数的选择是相当自然的一个。在继续讲之前,这里有一个关于sigmoid函数导数的有用的特征,我们把导数写作 :


所以,给定逻辑回归模型,我们如何选择合适的 ?接下来我们看到最小二乘回归如何在一组假设下作为最大似然估计量可以被推出,让我们赋予我们的分类模型一组概率假设,然后通过最大似然来选择合适的参数。
让我们假设


注意到,这可以更简洁的被写作


假设m个训练样例是独立生成的,我们可以写出参数的似然为


就像以前,最大化log似然更简单一些:


我们如何最大化似然?和在线性回归情况的推导相似,我们可以使用梯度上升。以向量符号写出,因此我们的更新(规则)为 。(注意在更新规则中为正号而不是负号,因为我们现在正在最大化一个函数,而不是最小化)。让我们首先从仅仅一个训练样例 开始,取导数得到随机梯度上升规则:


上面,我们使用了 这一事实。因此,我们的梯度上升规则为


如果我们把它和LMS更新规则进行比较,我们可以看出它看起来是相同的;但是这不是相同的算法,因为现在被定义成一个关于的非线性函数。尽管如此,但对于一个稍微不同的算法和学习问题,我们最终得到相同的更新规则,还是有一点令人吃惊的。这是巧合吗或者在这背后有更深层次的原因?当我们讲到GLM模型时将会回答这个问题。


6  离题:感知器学习算法


我们现在离题去简单的讨论一个历史上有趣的算法,我们也会在谈到学习理论的时候回到这个算法。考虑修改逻辑回归方法,“强迫”它精确地输出为0或1。为了实现这个,看起来改变 的定义为阈值函数是自然的:


然后如果我们像以前令 但使用这个修正的 ,而且使用更新规则


然后我们得到感知器学习算法。
在20世纪60年代,这个“感知器”被认为是一个关于单个神经元如何在大脑工作
的粗糙模型。鉴于这个算法是多么简单,之后在这门课当我们谈论学习理论时,它也会我们分析提供一个开端。然而要注意的是,尽管感知器算法外观上和我们之前讨论过的算法相似,实际上它是一个和逻辑回归和最小二乘线性回归类型非常不同的算法;尤其是,赋予感知器的预测有意义的概率解释或作为一个最大似然估计估计算法得到感知器是困难的。

7  最大化的另外一个算法

回到逻辑回归,sigmoid函数,让我们现在讨论一种最大化不同的算法。

我们开始,让我们首先考虑牛顿法求得一个函数的零解。特有地,假定我们有某个函数,我们希望寻找一个使得值。这里,是一个实数。牛顿法执行如下的更新:


这个方法有一个自然的解释,在解释中我们把它看作通过一个线性函数来近似函数,而这个线性函数是在当前猜测值的切线,解决这个线性函数在哪里等于0,让下一个的猜测值为这个线性函数等于0的点。

这里有一幅运行牛顿法的图片:

 

在最左边的图形,我们看到画出了函数和直线。我们正尽力寻找使得。满足这要求的值大约是1.3。假定我们以初始化这个算法。牛顿法然后在处拟合一条为切线的直线,解决那条直线在哪里为0(中间图形)。这给出了下一个关于的猜测值,大约为2.8。最右边的图形显示了再执行一次迭代的结果,更新成了1.8。再经过几次迭代,我们迅速接近

牛顿法给出了一种求解的方法。要是我们想用它来最大化某个函数又怎么样呢?的极值点对应着一阶导数等于等于0的点。所以,通过使,我们可以使用相同的算法来最大化,我们得到更新规则:


(一些需要思考的地方:如果我们想牛顿法最小化而不是最大化一个函数,这个如何改变?)

最后,在我们的逻辑回归环境下,是向量值,所以我们需要推广牛顿法到这个环境。牛顿法推广至这个多维环境(也称作Newton-Raphson方法)由


给出。这里,是,像往常一样,关于的偏导数向量;是一个n x n(实际上,n+1 x n+1,假定我们包括截距项)的被称作Hessian的矩阵,其元素为


牛顿法通常比(批)梯度下降收敛的更快,需要少很多次的迭代来接近最小值。不过,牛顿法的一次迭代比梯度下降的一次迭代代价更高,因为它需要求出一个n x nHessian阵和它的逆;但是只要n不是太大,牛顿法通常在整体上快很多。当牛顿法被用来最大化逻辑回归log似然函数,得到结果的方法也被称作Fisher scoring


想写一写机器学习的翻译来巩固一下自己的知识,同时给需要的朋友们提供参考,鉴于作者水平有限,翻译不对或不恰当的地方,欢迎指正和建议。


  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值