天池学习赛-保险反欺诈预测参考代码过程

本文详述了一次天池学习赛的保险反欺诈预测项目,包括数据加载、合并、清洗、特征处理、日期特征转换、模型训练及结果导出。通过数据预处理,对特征进行优化,并使用lightgbm模型进行分类,最终模型得分达到0.97。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、赛题背景

二、数据加载

        1.导入相关库

       2.导入训练集:

        3.导入测试集:

 三、合并数据集(对train和test进行合并)

四、数据清洗

 五、对数据唯一值个数进行处理

 六、对日期特征进行处理

 七、模型训练

 八、导出结果

九、个人总结


一、赛题背景

        赛题以保险风控为背景,保险是重要的金融体系,对社会发展,民生保障起到重要作用。保险欺诈近些年层出不穷,在某些险种上保险欺诈的金额已经占到了理赔金额的20%甚至更多。对保险欺诈的识别成为保险行业中的关键应用场景。

二、数据加载

        1.导入相关库

       2.导入训练集:

         运行结果:

        3.导入测试集:

         运行结果:

 三、合并数据集(对train和test进行合并)

合并数据集(对train和test进行合并)

 运行结果:

四、数据清洗

        统计数据为空的值

运行结果:无空值,无需对数据预处理

 

### 天池保险反欺诈项目中的测试集与线上准确率差异分析 在天池保险反欺诈预测项目中,模型在线上环境的表现可能显著不同于离线测试集上的表现。这种现象主要源于以下几个方面: #### 数据分布不一致 训练数据和实际生产环境中遇到的数据可能存在分布差异。例如,在构建模型时使用的样本可能是历史数据,而这些数据无法完全代表未来的模式变化。因此,当新类型的欺诈行为出现时,即使模型在验证集中取得了很好的效果,也可能因为未曾见过的新特征而导致性能下降[^1]。 #### 时间漂移效应 随着时间推移,影响欺诈发生的因素会发生改变,这被称为时间漂移(Time Drift)。如果用于评估模型的线下测试集未能捕捉到最新的趋势,则可能导致其准确性高于实际情况下的表现。此外,季节性和周期性的波动也会影响最终的结果一致性[^2]。 #### 特征工程局限性 尽管参者会尽可能多地挖掘有效特征来提升模型泛化能力,但在某些情况下仍难以覆盖所有潜在的影响因子。特别是对于那些仅存在于特定时间段内的变量或事件,它们可能会干扰模型判断并造成偏差。而且,部分特征的选择依赖于已知标签的信息,而在真实应用场景下这部分信息往往是不可获得的[^3]。 ```python import pandas as pd from sklearn.metrics import accuracy_score, roc_auc_score def evaluate_model(model, X_test_offline, y_test_offline, X_online, y_online): """ 对比模型在离线测试集和线上数据上的表现 参数: model (object): 训练好的分类器对象 X_test_offline (DataFrame): 离线测试特征矩阵 y_test_offline (Series): 离线测试目标向量 X_online (DataFrame): 线上特征矩阵 y_online (Series): 线上目标向量 返回: tuple: 包含两个元组,分别是(offline_accuracy, offline_roc), (online_accuracy, online_roc) """ # 预测概率值 proba_offline = model.predict_proba(X_test_offline)[:, 1] pred_offline = model.predict(X_test_offline) proba_online = model.predict_proba(X_online)[:, 1] pred_online = model.predict(X_online) # 计算各项指标 offline_metrics = ( accuracy_score(y_test_offline, pred_offline), roc_auc_score(y_test_offline, proba_offline) ) online_metrics = ( accuracy_score(y_online, pred_online), roc_auc_score(y_online, proba_online) ) return offline_metrics, online_metrics ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值