物理学(第七版)-- 光的衍射

文章讲述了光在遇到狭缝或类似障碍物时产生的衍射现象,特别是夫琅禾费单缝衍射中的明纹和暗纹分布。光栅的定义和其常量被提及,以及光栅常量通常的数值范围。光栅衍射条纹结合了衍射和干涉的效果,文章还讨论了光的偏振现象,包括马吕斯定律和布儒斯特角的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

衍射:当光在传播中遇到狭缝与波长差不多的障碍物时,光传到障碍物的阴影区且形成明暗变化的光强分布。

夫琅禾费单缝衍射

                          

明纹:b\sin \theta =\pm (2k+1)\frac{\lambda }{2} \; ,\;k=1,2,...

暗纹:b\sin \theta =\pm k\lambda \; ,\;k=1,2,...

中央明纹宽度:\Delta x_{0}=\frac{2\lambda f}{b}                                                                           

其他明纹宽度:\Delta x= \frac{\lambda f}{b}                                                                                                             

中央明纹会比其他明纹亮

光栅

                    

光栅常量:d=(a+b), 其中,b为不透光的宽度,a为透光的宽度

                光栅常量一般在10^{-6}\sim 10^{-5}m的数量级

光栅的衍射条纹是衍射和干涉的总效果

光栅方程(明纹条件):(a+b)\sin \theta =\pm k\lambda ,\; k=0,1,2,...

缺级:(a+b)\sin \theta =\pm k\lambda ,\; k=0,1,2,...

            b\sin \theta =\pm {k}'\lambda ,\; {k}'=0,1,2,...

             \frac{(a+b)}{b}=\frac{k}{​{k}'}

偏振

 马吕斯定律        I_{1}=\frac{I_{0}}{2}        I_{2}= I_{1}\cos ^{2}\theta

布儒斯特角:反射光为完全偏振光,折射光为部分偏振光        

                ​​​​​​​     \mathbf{\tan i_{B}=\frac{n_{2}}{n_{1}}}  &  \frac{\sin i_{B}}{\sin r_{B}}=\frac{n_{2}}{n_{1}}\; \Rightarrow \;  \mathbf{i_{B}+r_{B}=\frac{\pi }{2}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值