Deep Learning with Differential Privacy论文阅读

标题理解

标题言简意赅,差分隐私下的深度学习,初看标题,可以推测文章会在深度学习框架中添加噪声扰动,以实现差分隐私,可以主要关注文章的深度学习框架是怎么改变的,与传统深度学习论文有哪些区别,具体是如何实现的。

Abstract

Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy.
提到建立了一种可以实现差分隐私的框架,并对隐私成本进行了精细的分析。
Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
并提到了这个新算法颇有成效。

Introduction

提出了三个主要工作:

1.We d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值