【机组组合】基于数据驱动的模型预测控制电力系统机组组合优化【IEEE24节点】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 UC_original

 2.2 UC_compact

2.3 SCi结果 

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

文献来源:

 作为电力系统运营和电力市场清算中的重要应用,网络约束机组组合(NCUC)问题通常由独立系统运营商(ISO)在开环预测后优化(O-PO)过程中执行,其中上游预测(例如,可再生能源(RES)和负载)和下游NCUC在队列中执行。但是,在O-PO框架中,统计上更准确的预测不一定会导致相对于实际RES和负载实现的更高NCUC经济性。为此,本文提出了一个闭环预测和优化(C-PO)框架,用于改善NCUC经济学。具体而言,C-PO利用NCUC模型的结构(即约束和目标)和相关特征数据来训练面向成本的RES预测模型,其中通过诱导的NCUC成本而不是统计预测误差来评估预测质量。因此,预测和优化之间的循环是闭合的,以便为NCUC优化提供面向成本的RES功率预测。采用拉格朗日松弛来加速训练过程,使C-PO适用于现实世界的系统。基于IEEE RTS 24节点系统和ISO尺度5655节点系统的实实数据,结果表明,与传统的O-PO相比,所提出的C-PO可以有效提高NCUC的经济性。本文主要做的是一个基于数据驱动的电力系统机组组合调度模型,相比于以往的基于开环模型预测控制的方法,采用闭环模型预测控制方法,通过样本训练、日前调度以及实时调度等步骤,实现了基于数据驱动的闭环模型预测控制电力系统机组组合问题的求解,模型整体创新度非常高,难度也较大。

文献直接下载:
链接:夸克网盘分享
提取码:U6E2

原文摘要:

Abstract:

As an important application in the power system operation and electricity market clearing, the network-constrained unit commitment (NCUC) problem is usually executed by Independent System Operators (ISO) in an open-looped predict-then-optimize (O-PO) process, in which an upstream prediction (e.g., on renewable energy sources (RES) and loads) and a downstream NCUC are executed in a queue. However, in the O-PO framework, a statistically more accurate prediction may not necessarily lead to a higher NCUC economics against actual RES and load realizations. To this end, this paper presents a closed-loop predict-and-optimize (C-PO) framework for improving the NCUC economics. Specifically, the C-PO leverages structures (i.e., constraints and objective) of the NCUC model and relevant feature data to train a cost-oriented RES prediction model, in which the prediction quality is evaluated via the induced NCUC cost instead of the statistical forecast errors. Therefore, the loop between the prediction and the optimization is closed to deliver a cost-oriented RES power prediction for NCUC optimization. Lagrangian relaxation is adopted to accelerate the training process, making the C-PO applicable for real-world systems. Case studies on an IEEE RTS 24-bus system and an ISO-scale 5655-bus system with real-world data show that the proposed C-PO can effectively improve the NCUC economics as compared to the traditional O-PO.

📚2 运行结果

2.1 UC_original

 2.2 UC_compact

2.3 SCi结果 

部分代码:

%% -------------------------Constraints: general------------------------ %%
CC_General = [UC_A_ineq*x <= UC_b_ineq];
%
%% -------------------------Constraints: special------------------------ %%
CC_Special = [];
% CC_Special_01: Load shedding limit
Load_RUM      = Data_load_city{24*(Day_1st-1)+1:24*Day_end, :};
Country_Load  = sum(Load_RUM,2);
CC_Special    = CC_Special + [Decision_L_s(:) + Decision_L_r(:) == Load_RUM(:)];
% CC_Special_02: RES curtailment limit
RES_DAF     = Data_RES_DAF{(24*(Day_1st-1)+1:24*Day_end), :};
Country_RES = sum(RES_DAF,2);
CC_Special  = CC_Special + [Decision_W_s(:) + Decision_W_r(:) == RES_DAF(:)];
% CC_Special_03: Provided reseve
CC_Special = CC_Special...
           + [Decision_R_load_req == R_for_load*Country_Load]...
           + [Decision_R_RES_req  == R_for_RES*Country_RES]...
           + [Decision_R_load_req + Decision_R_RES_req == Decision_R_all_req];
%
%% ---------------------------Constraints: all-------------------------- %%
CC = CC_General + CC_Special;
%
%% ------------------------------Objective------------------------------ %%
Cost_UC = UC_c'*x;
%% -------------------------------Solve it------------------------------ %%
ops = sdpsettings('solver', 'gurobi'); 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]X. Chen, Y. Yang, Y. Liu and L. Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework," in IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 3104-3118, July 2022, doi: 10.1109/TPWRS.2021.3128485.

🌈4 Matlab代码、数据、文章讲解

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
电力系统机组组合优化调度是指在一个电力系统中,通过优化和调度各个机组的运行方式,以最大程度地提高系统的效率和可靠性。在IEEE 14节点系统中,该问题的目标是最小化发电成本,同时满足电力需求和各种操作限制。 首先,我们需要确定机组组合,即选择哪些机组应该投入运行。在这个问题中,我们可以使用数学规划方法,如整数规划或混合整数线性规划,来确定最佳的机组组合。这些方法将考虑机组的最小运行成本、发电能力和各种操作限制,如启停时间和最小运行时间,以及机组的运行状态。通过优化机组组合,我们可以最小化发电成本,同时满足电力需求。 接下来,我们需要对机组的调度进行优化。调度是指在给定的时间段内,确定每个机组的发电量和出力调节策略,以满足电力需求和操作限制。我们可以使用数学规划方法,如线性规划或非线性规划,来确定最佳的机组调度。这些方法将考虑机组的出力能力、发电成本、启停时间和运行状态等因素,以最大程度地提高系统的效率和可靠性。 最后,通过机组组合优化调度,我们可以实现电力系统的经济运行和可靠供电。优化调度可以最大限度地降低发电成本,减少燃料消耗和排放,提高电力系统的效率和可持续性。此外,优化调度可以根据负荷变化和机组故障等情况,实时调整机组的发电量和出力调节策略,以保证系统的稳定运行和供电安全。 综上所述,电力系统机组组合优化调度在IEEE 14节点系统中是通过优化机组组合和调度,以最小化发电成本、最大程度地提高系统效率和可靠性,实现经济运行和可靠供电的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值