一文搞懂DeepSeek - 开源模型R1

最近已有不少大厂停止秋招宣讲,准备春招吧。

节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。

总结链接如下:

《大模型面试宝典》(2024版) 发布!

喜欢本文记得收藏、关注、点赞。


DeepSeek-R1 作为一款开源的大型语言模型,在数学、编程和推理等多个任务上表现出了强大的性能。其纯强化学习的训练方法、开源与低成本的特性以及技术创新使得DeepSeek-R1成为了AI领域的一颗新星。

在多个基准测试中,DeepSeek-R1的表现优于或接近OpenAI o1。例如,在AIME 2024数学测试中,DeepSeek-R1的准确率接近OpenAI o1-0912的水平;在MATH-500、Codeforces和MMLU等测试中,也取得了优异的成绩。
图片

一、DeepSeek

DeepSeek(深度求索)是什么?DeepSeek是杭州深度求索人工智能基础技术研究有限公司的简称,同时DeepSeek也是该公司研发的通用人工智能开源大模型平台。

DeepSeek完全基于自研训练框架、自建智算集群和万卡算力等资源,在短时间内取得了显著的研发成果。它通过大幅度缩减以往大模型所需要的庞大算力,直接把大模型的成本降了下来,被称为“AI界的拼多多”。

图片

DeepSeek系列模型有哪些?DeepSeek系列模型包括R1(数学、代码及推理领域开源大模型,回答全面详实)、V3(自研MoE模型,性能顶尖且性价比极高)、VL(视觉与语言理解开源多模态模型)、V2(创新架构,推理成本低廉)、R1-Zero(强化学习预模型,独特优势)、以及蒸馏版Qwen和Llama小模型(从R1数据蒸馏,表现优异)。

  • DeepSeek-R1:一款在数学、代码及自然语言推理领域与OpenAI o1比肩的开源大模型,以其全面、详实的回答和结构化输出著称。

  • DeepSeek-V3:凭借自研MoE模型和671B参数,在性能上超越所有已发布的开源模型,成为极具性价比的顶尖大模型之一。

  • DeepSeek-VL:专为视觉和语言理解设计的开源多模态模型,能够处理复杂场景下的逻辑、公式识别及自然图像等问题。

  • DeepSeek-V2:以创新的模型架构和极低的推理成本,成为性价比极高的大模型选择。

  • DeepSeek-R1-Zero:采用强化学习训练的预模型,不走传统监督微调路线,展现独特优势。

  • 蒸馏版Qwen、Llama系列小模型:从DeepSeek-R1数据上蒸馏得到的小模型,表现优秀,部分任务上甚至超越GPT-4o。

二、DeepSeek-R1

DeepSeek-R1是什么?DeepSeek-R1是一款在2025年1月20日发布的大型语言模型,它采用了包含6710亿参数的MoE(专家混合)架构,特别主打推理功能。同时DeepSeek-R1开源了模型权重,并采用了宽松的MIT许可协议,为开发者提供了极大的便利和灵活性。

DeepSeek-R1与OpenAI-o1相比,其优势在于开源特性、强化学习训练的高效推理能力以及低成本,为开发者提供了更多选择和灵活性。

图片

DeepSeek-R1的核心亮点是什么?DeepSeek-R1的核心亮点在于其作为首个完全通过强化学习训练的大型语言模型,无需监督微调,结合冷启动数据显著提升了推理能力,并提供多个蒸馏版本及低成本的API服务。

  • DeepSeek-R1-Zero是首个完全通过强化学习(RL)训练的大型语言模型,无需依赖监督微调(SFT)或人工标注数据。为了进一步提升模型性能,DeepSeek-R1引入了冷启动数据,结合强化学习进行训练。解决了R1-Zero在可读性和语言混合方面的局限性,显著提升了模型的推理能力。

  • DeepSeek-R1提供了六个蒸馏版本(1.5B至70B),适合不同规模的开发者使用。与OpenAI o1相比,API调用成本显著降低。

DeepSeek-R1的核心创新是什么?DeepSeek-R1的技术创新在于开发了GRPO算法以优化策略网络,避免了高计算开销,同时设计了多层次奖励机制和“思考-回答”双阶段训练模板,确保模型推理的高效性、可读性和过程可追踪性。

  • DeepSeek开发的GRPO算法通过群组相对优势估计,优化了策略网络,有效降低了传统Critic网络的高计算开销。

  • DeepSeek-R1采用了包括准确性、格式和语言一致性在内的多层次奖励机制,确保了模型在推理任务中的高效性和输出内容的可读性。

  • 通过“思考-回答”双阶段训练模板,DeepSeek-R1实现了推理过程的可追踪性,并为奖励计算提供了明确基准,从而输出了结构化的答案。

### DeepSeek-R1 本地部署教程 快速上手指南 #### 环境准备 为了确保顺利安装和运行,建议先确认计算机满足最低硬件要求,并已安装必要的软件依赖项。这通常包括 Python 版本兼容性和其他开发工具包。 #### 步骤一:获取源码或镜像文件 可以从官方渠道下载最新的 DeepSeek-R1 发布版本或者 Docker 镜像。对于大多数用户来说,使用预构建的 Docker 镜像是最简单的方式[^1]。 ```bash docker pull deepseekai/deepseek-r1:latest ``` #### 步骤二:初始化配置 启动容器前需创建并编辑配置文件 `config.yaml` 来指定数据路径和其他参数设置。此步骤允许自定义存储位置以及调整性能选项以适应具体应用场景的需求[^2]。 ```yaml data_path: "/path/to/data" log_level: "INFO" ... ``` #### 步骤三:启动服务 一切就绪之后就可以通过命令行来启动 DeepSeek-R1 的实例了。如果选择了 Docker 方式,则可以利用如下指令: ```bash docker run --name=deepseek-r1 -v /local/path:/container/path -p 8080:8080 deepseekai/deepseek-r1 ``` 上述命令会映射端口并将主机目录挂载至容器内以便访问外部资源。此时应该能够通过浏览器或其他 HTTP 客户端连接到正在监听的服务接口地址 http://localhost:8080/ 进行交互测试。 一旦完成了这些基本设定,便可以根据实际业务逻辑进一步探索更多高级特性的应用可能性,比如集成第三方 API 或者训练定制化模型等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值