SCI总结基于计算机视觉和深度学习的精准农业杂草检测模型

该研究提出了一种结合计算机视觉和深度学习的CVDL-WDC模型,用于精准农业中的杂草检测和分类。模型通过多尺度快速RCNN进行目标检测,再利用最优极限学习机(ELM)进行杂草分类,旨在提高区分作物与杂草的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.介绍

本研究提出了一种新的基于计算机视觉和深度学习的精准农业杂草检测和分类(CVDL-WDC)模型。所提出的CVDL-WDC技术旨在正确地区分植物和杂草。所提出的CVDL-WDC技术包括两个过程,即基于多尺度快速RCNN的目标检测和基于最优极限学习机(ELM)的杂草分类

二.研究方法

三.实验结果

四.结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值