【负荷预测】基于BiGRU的负荷预测研究(Python代码实现)

                                 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、BiGRU基本原理

三、基于BiGRU的负荷预测方法

四、应用案例与效果分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiGRU的负荷预测研究


一、引言

负荷预测是能源管理、电力系统规划及运营中的一项重要任务。随着智能电网和物联网技术的发展,负荷数据的采集和处理能力显著提升,为基于深度学习的负荷预测方法提供了丰富的数据支持。双向门控循环单元(BiGRU)作为一种改进的循环神经网络(RNN)结构,以其能够有效捕捉序列数据中的长距离依赖关系而备受关注。本文旨在探讨基于BiGRU的负荷预测方法,分析其原理、流程及应用效果。

二、BiGRU基本原理

BiGRU是双向门控循环单元(Bi-directional Gated Recurrent Unit)的简称,它是在GRU(Gated Recurrent Unit)的基础上发展而来的。GRU通过引入更新门和重置门来解决传统RNN中的梯度消失问题,而BiGRU则通过增加一个反向的GRU层来同时捕捉序列的正向和反向信息,从而进一步提高模型的性能。

三、基于BiGRU的负荷预测方法

基于BiGRU的负荷预测方法主要包括以下几个步骤:

  1. 数据预处理
    • 收集历史负荷数据及相关影响因素(如天气、节假日等)。
    • 对数据进行清洗,去除异常值和缺失值。
    • 对数据进行归一化处理或标准化处理,以消除不同量纲对预测结果的影响。
  2. 特征选择
    • 根据负荷预测的需求和数据的可用性,选择合适的特征作为BiGRU神经网络的输入。
    • 常见的特征包括历史负荷值、温度、湿度、节假日标识等。
  3. 模型构建
    • 搭建BiGRU模型,定义模型的输入层、正向GRU层、反向GRU层、连接层以及输出层。
    • 设置模型的超参数,如GRU层的单元数、学习率、优化器等。
  4. 模型训练
    • 使用预处理后的数据对BiGRU模型进行训练。
    • 通过反向传播算法调整模型参数,使得模型在训练集上的损失函数最小化。
    • 可以采用交叉验证等方法来评估模型的性能,并进行必要的调整和优化。
  5. 预测与评估
    • 利用训练好的BiGRU模型进行负荷预测。
    • 使用适当的评估指标(如均方误差MSE、均方根误差RMSE、平均绝对误差MAE等)对预测结果进行评估。

四、应用案例与效果分析

已有研究表明,基于BiGRU的负荷预测方法在实际应用中取得了良好的效果。例如,在电力负荷预测中,通过结合历史负荷数据和气象数据,利用BiGRU模型能够有效捕捉负荷数据中的时间序列特性和非线性关系,实现高精度的短期负荷预测。此外,BiGRU模型还具有较强的泛化能力,能够适应不同时间尺度和不同区域的负荷预测需求。

五、结论与展望

基于BiGRU的负荷预测方法以其能够有效捕捉序列数据中的长距离依赖关系和非线性特征的优势,在负荷预测领域展现出了广阔的应用前景。未来,随着数据量的不断增加和计算能力的提升,BiGRU算法在负荷预测中的性能将得到进一步提升。同时,结合其他先进的人工智能技术(如注意力机制、深度学习优化算法等),可以构建更加复杂、高效的负荷预测模型,为电力系统的优化运行和智能调度提供更加有力的支持。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值