【负荷预测】基于BiTCN-GRU的负荷预测研究(Python代码实现)

                   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiTCN-GRU的负荷预测研究

一、研究背景与意义

随着电力系统的不断发展和电力市场的日益复杂化,负荷预测已成为电力系统规划和运行管理中的重要环节。负荷预测的准确性对于电力系统的稳定、经济运行至关重要。近年来,随着深度学习技术的快速发展,越来越多的学者和工程师开始尝试将深度学习算法应用于负荷预测领域,以提高预测精度和稳定性。

二、模型介绍

本文研究了一种基于双向时间卷积门控循环单元(BiTCN-GRU)的负荷预测模型。该模型结合了双向时间卷积网络(BiTCN)和门控循环单元(GRU)的优势,并引入了注意力机制(Attention),以实现对负荷多变量时间序列的精确预测。

  1. 双向时间卷积网络(BiTCN)

    • 特点:BiTCN通过同时考虑数据的正向和反向时间信息,增强了模型对历史趋势的理解,增加了记忆和上下文信息。利用卷积层处理时间序列,能够提取局部特征,并有效地捕获不同尺度的时间依赖模式。
  2. 门控循环单元(GRU)

    • 特点:GRU是一种简化的长短期记忆网络(LSTM),减少了计算量,但仍保留了门控单元,有助于学习更有效的长期依赖关系。通过门控机制(重置门和更新门),GRU能够选择性地保留重要信息,并有效地抑制噪声的影响。
  3. 注意力机制(Attention)

    • 作用:引入注意力机制能够识别不同特征变量对预测结果的重要程度,并根据其重要性分配不同的权重。这有助于模型更加关注对预测结果影响较大的特征变量,从而提高预测精度。

三、模型框架

基于BiTCN-GRU的负荷预测模型主要包括输入层、特征提取层和输出层三个部分:

  1. 输入层:接收多变量时间序列数据,包括历史负荷、气象信息、经济指标等。数据经过预处理,如归一化和数据平滑,以便于模型的学习。

  2. 特征提取层

    • BiTCN:利用双向卷积操作提取时间序列数据的空间特征,并通过卷积核的滑动来捕捉数据的时间相关性。
    • GRU:接收BiTCN的输出作为输入,进一步捕捉时间序列的长期依赖关系。
    • Attention:对GRU的输出进行处理,识别关键特征并分配权重。
  3. 输出层:根据特征提取层提取的特征信息,预测未来的负荷值。

四、实验验证与结果分析

为了验证基于BiTCN-GRU的负荷预测模型的有效性,本文采用了真实电力负荷数据进行实验。实验结果表明,该模型在预测精度方面显著优于传统方法,如ARIMA和SVM等。具体表现在以下几个方面:

  1. 预测精度:BiTCN-GRU模型在均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等评价指标上均表现出色,预测精度高于其他基准模型。

  2. 稳定性:由于模型结合了BiTCN、GRU和Attention的优势,能够同时利用数据的空间和时间信息,因此预测结果更加稳定可靠。

  3. 适应性:该模型能够处理多变量时间序列数据,并自动识别不同特征变量对预测结果的影响程度,具有较强的适应性和泛化能力。

五、结论与展望

本文提出的基于BiTCN-GRU的负荷预测模型在电力负荷预测领域展现出了良好的性能。通过结合双向时间卷积网络、门控循环单元和注意力机制的优势,该模型能够更有效地提取数据的时空特征,并提高预测精度和稳定性。未来的研究可以进一步优化模型结构和参数调整策略,以进一步提高负荷预测的性能和应用范围。

六、参考文献

由于篇幅限制,本文未列出所有参考文献。但本文的研究基于多篇相关领域的文献和研究成果,特别是关于深度学习在负荷预测领域的应用方面的文献。读者可以查阅相关领域的专业期刊和会议论文以获取更多详细信息。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值